
AD-AI02 583 GEORGE WASHINGTON UNIV WASHINGTON DC PROGRAM IN LOGISTICS F/6 12/1
SOLVING MULTIACTIVITY MULTIFACILITY CAPACITY-CONSTRAINED 0-1 AS--ETC(U)
MAY A1 K L CI*4ABRA NOGOI'4-80-C-0169

UNCLASSIFIED SERIALT-441 N

I 2 fflfllfllfllfllf

mhmhmhmmhu
mhhhhhmmhhomhu

MMUNIY LEDERSIPERSTEC

NOLOGY FRONTIF'r
ENGINEERING AP EN(
GEORGE WASHW N

C->4

C.. Z

II)

TI.. "

8'1. ., 1

ll l)()Kt%,IvrNI IIA R[IN AIPPR()VII) fbR PUJRLIC RIIfASI ANI() "-"dfli I T I(SRILIIN IS U',tIM.I|()

/

SOLVING MULTIACTIVITY MULTIFACILITY

/ CAPACITY-CONSTRAINED 0-1 ASSIGNMENT PROBLEMS

by

Krishan LalChhabra

Serial--T-441

/

Thie George Washington University
School of Engineering and Applied Science

Institute for Management Science and Engineering

/ •Program in Logistics

Contrac N00014-80-C-0169,'
Project NR 347 059

Office of Naval Research

This document has been approved for :ublic
sale and release; its distribution is uilimited.

~'11

NONE
,ECURITY CLASSIFICATItjN OF THIS PAGE (When Dot. F.nllrsd)

READ INSTRUCTIONSREFORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I REPORT NUMBER 2. GOVT ACCESSION NO. S RECIPIENT'S CATALOG NUMBER

T-441 AI- __ _ _ _

4 TITLE "and.SuhtII.) 1. TYPE OF REPORT & PERIOD COVERED

SOLVING MULTIACTIVITY MULTIFACILITY
CAPACITY-CONSTRAINED 0-i ASSIGNMENT PROBLEMS SCIENTIFIC

S. PERFORMING ORG. REPORT NUMBER

T-441
AUTHOR(Aj 8. CONTPACT OR GRANT NUMBER(e)

KRISHAN LAL CHHABRA N00014-80-C-0169-

9 PERFORMING ORGANIZATION NAME AND ADDRESS IC. PROGRAM ELEMENT. PROJECT. TASK

THE GEORGE WASHINGTON UNIVERSITY AREA & WORK UNIT NUMBERS

PROG;RAM IN LOGISTICSvi

WASHINGTON, DC 20052

11 CONTROLLING OFFICE NAME AND ADDRESS 12. R.PORT OATS

OFFICE OF NAVAL RESEARCH 12 May 1981
CODE 434 11. NUMBER OF PAGES

ARLINGTON, VA 22217 121
14 MONITORING AGENCY NAME & ADDRESS(II different Iro. Controlllng Olfce) 1S. SECURITY CLASS. (of this report)

NONE

1Sa. DECLASSIFICATION/DOWNGRADING
SCNMErULE

16 DISTRIBUTION STATEMEN'T (of this Report)

APPROVED FOR PUBLIC SALE AND RELEASE; DISTRIBUTION IS UNLIMITED.

17, DISTRIBUTION STATEMENT (of the aebetralc entered In Block 20, It different free Report)

IS SUPPLEMENTARY NOTES

It KEY WORDS (Continue on reverse sde If nleces y .id identify by block nm.ber)

BRANCH AND BOUND

INTEGER PROGRAMMING
MULTIACTIVITY MULTIFACILITY ASSIGNMENT PROBLEMS
0-i ASSIGNMENT PROBLEMS

20 ABSTRACT (Continue on reveree etde It necessary end Identify by bleck nember)

A branch-and-bound solution algorithm and a computer program
implementing this algorithm are developed to solve multiactivity multi-
facility capacity-constrained 0-1 assignment problems. Such 0-I integer
programming problems have the objective of minimizing the sum of variable
costs due to the assignment of the activities to designs and fixed costs
due to the inclusion of the facilities chosen. The constraints ensure

DD I 1473 EDITION OF I NOV65 It OSOLETE O
s /C R T2 - 1 4 -A S I F I C A O N E

SECURITY CL.ASIICATION O0
r

THIS PAGE (Whenm Date Entered)

NONE
I Y CLA.SIFIt A7 ION OF IHIS PAGE(When Date Entered)

20. Abstract - (Cont'd)

that each activity is assigned to a single design and that the capacities
of the facilities chosen are not exceeded. Each design involves the use
of one or more facilities, and the same design may be used by several
activities. This document includes formulation of the problem, mathemat-
ical development of the branch-and-bound solution algorithm, a detailed
test example, and computational test results using the computer program.
The areas of application are identified, and consideration for further
improvement of the branch-and-bound solution algorithm are also included.

S t

1

NONE
I[CUNRTY CLASSIICATION OF T4S T1PAGIVt.lwh Deta 3ut.d)

THE GEORGE WASHINGTON UNIVERSITI

School of Engineering and Applied Scie2nce
Institute for Management Science and Engitieering

Program in Logistics

Abstract

of

Serial T-441

12 May 1981

SOLVING MULTIACTIVITY MULTIFACILITY
CAPACITY-CONSTRAINED 0-1 ASSIGNMENT PROBLEMS

by

Krishan Lal Chhabra

A branch-and-bound solution algorithm and a computer program
implementing this algorithm are developed to solve multiactivity
multifacility capacity-constrained 0-1 assignment problems. Such 0-1
integer programming problems have the objective of minimizing the sum
of variable costs due to the assignment of the acti.vities to designs
and fixed costs due to the inclusion of the facilities chosen. The

constraints ensure that each activity is assigned to a single design
and that the capacities of the facilities chosen are rot exceeded.
Each design involves the use of one or more facilities, and the same

design may be used by several activities. This document includes
formulation of the problem, mathematical development of the branch-

and-bound solution algorithm, a detailed test example, ind computa-
tional test results using the computer program. The areas of application
are identifieo, and consideration for further improvemen, of the
branch-and-bound solution algorithm are also included.

Program in Logistics

Contract N00014-80-C-0169
Project NR 347 059

Office of Naval Research

/

lr

SOLVING A MULTIACTIVITY MULTIFACILITY

CAPACITY-CONSTRAINED 0-i ASSIGNMENT PROBLEM

by

Krishan Lal Chhabra

B.M.E. 1965, University of DeLhi
M.S. 1973, The George Washington University

A Dissertation submitted to

The Faculty of

The School of Engineering and Applied Science

of The George Washington University in partial satisfaction

of the requirements for the degree of Doctor of Science

May 3, 1981

Dissertation directed by

Richard Martin Soland

Professor of Operations Research

...

Abstract

SOLVING A MULTIACTIVITY MULTIFACILITY
CAPACITY-CONSTRAINED 0-1 ASSIGNMENT PROBLEM

by

Krishan Lal Chhabra

Richard Martin Soland, Director of Research

A branch-and-bound solution algorithm and a computer program
implementing this algorithm are developed to solv a multiactivity
multifacility capacity constrained 0-1 assignment problem. The math-
ematical formulation for such a problem, called problem (P), is to find

xij and yk values that:

m n p
Minimize E E a.. x.. + E bkYk (i)

i=l j=l13 3 k=1

m
subject to x = 1 j=!,...,n (ii)i= I xij

m n
dkl, ..,p (iii)

i=l j- uk ij - Skk k

x. =0 or 1 for all I and j (iv)

Yk 0 or 1 for all k (v)

ii

where i , j , k are indices for designs, activities, and facilities, r
respectively; x.. has value 1 if and only if activity j uses design

i , and yk has value 1 if and only if facility k is used. A design

involves the use of one or more facilities, and -he same design may be used
by several activities.

Problem (P) has the objective of minimizing the sum of a..'s --

i3
the variable costs due to the assignments of activities to designs, and
b 's -- the fixed costs due to the facilities used. Constraints (ii)
k

and (iv) ensure that each activity is assigned to z single design. Each
dij k is the capacity required at facility k if activity j uses design

i , and is thus equal to zero if design i does not involve the use of
facility k . Constraints (iii), therefore, ensure that for each facility
k used, the total capacity required does not excaed the capacity available
sk ' The difficulty in solving problem (P) stems from the indirect relation-

ship between the assignments and facilities, i.e., an assignment x = 1

bears on all the constraints (iii) for which dij k is positive, and,

therefore, on several yk variables.

The branch-and-bound solution algorithm uses Lagrangian relaxation
as a basic step in obtaining lower bounds. In addition, it includes several
operational rules, such as a branching rule for a judicious choice of the
branching variable, a capacity rule to eliminate infeasible assignments,
and a bounding rule to eliminate non-optimal assignments.

This dissertation includes relevant background leading to the
formulation of problem (P), mathematical development of the branch-and-
bound solution algorithm, a detailed test example, and computational test
results using the computer program. The areas of applization are identified,
and suggestions for further improvement of the branch-and-bound solution
algorithm are included.

The ccmputer program has been written in FORTRAN IV. A detailed
description of the computer program and guidelines for its use are included
in a separate document entitled "Program Description and User's Guide for
ZIPCAP--a Zero-one Integer Program to solve multia.ztivity multifacility
Capacity-constrained Assignment Problems." Although developed for capac-
itated problems, the computer program can also be used to solve uncapacitated
problems in which it is assumed that the facilities have infinite capacity.

iii

A

ACKNOWLEDGMENTS

I wish to express my deep gratitude and appreciation to my research

director, Professor Richard M. Soland, for introducing me to this problem,

providing numerous insights and careful directioi, and being extremely

generous in sparing his valuable time throughout the research effort.

I am very grateful to my long-time academic adviser, as well as research

adviser, Professor Donald Gross, for his invaluable advice and guidance,
both academic and personal, throughout my graduate program.

Most of this research effort has been supported by the Office of
Naval Research under Contract No. N00014-75-C-0729 for which I am greatly

indebted to Mr. Robert K. Lehto and Mr. Charlie McPeters (Department of

the Navy), and Professor William H. Marlow.

Professors James E. Falk and Garth P. McCormick were kind enough
to review this dissertation, and I am very thankful to them for their

helpful comments.

I would like to thank Mr. William Caves for his assistance in
the development and testing of the computer program, and Professor Charles

Pinkus for providing data for the test problems.

I am very thankful to Bettie Taggart and Teresita Abacan for an
excellent job in editing and typing.

I take this opportunity to thank my parents and my brothers for
their assistance and guidance in my education. Finally, I owe special
thanks to my wife Promila who deserves a great part of the credit for her

understanding, patience, and encouragement; and tc my children Vintta,

Adhuna, and Nipun for "letting daddy do his homework" over a long period

of time.

iv

.4

TABLE OF CONTENTS

Page

Abstract ii

ACKNOWLEDGMENTS iv

Chapters

1 INTRODUCTION 1

1.1 Generalized Assignment Problem 2
1.2 Multiactivity Multifacility Uncapacitated

Assignment Problem 3
1.3 Adding Capacity Constraints -- Problem (P) 6

1.3.1 Comparison With the Uncapacitated
Assignment Problem 7

1.3.2 Comparison With the Fixed-Charge
Location-Allocation Problem 9

1.3.3 Solving Problem (P) 11

1.4 Areas of Application 11

2 DEVELOPMENT OF THE SOLUTION ALGORIThIM 15

2.1 Lagrangian Relaxation 15

2.1.1 Relaxing Problem (P) 17
2.1.2 General Characteristics 18

2.2 Some Results 21

Theorem 1 24
Theorem 2 25
Theorem 3 28

2.3 Relaxation (PR) 30

Theorem 4 33
Theorem 5 33

3 METHODOLOGY FRAMEWORK 35

3.1 Bounds 40

3.1.1 Lower Bound 40
3.1.2 Upper Bound 41
3.1.3 Best Upper Bound 41

v

3.2 Facility Usage Rule.....................42
3.3 Capacity Rule...........................42
3.4 Branching Rule...........................44
3.5 Bounding Rule............................44
3.6 Backtracking Rules.......................45

4 COMPUTATIONAL STEPS AND THE COMPUTER PROGRAM............47

4.1 rho Program.............................48
4.2 An Illustrative Example........ 53

5 COMPUTATIONAL TEST RESULTS.......................62

6 FURTHER CONSIDERATION...........................65

6.1 Alternative Formulations 65

6.1.1 Alternative Formulation 1. 65
6.1.2 Alternative Formulation 2. 67
6.1.3 Choice of Lagrange Multipliers..........69

6.2 Subgradient Method.......................75

REFERENCES.......................... 77

APPE1NDICES

A. ZIPCAP Listing (Revised).................83
B. Detailed Printout for a Test Problem 96

FIG URES

1. Examples of Alternate Designs for a Systemt
of Fi're Facilities.......................3

2. Example of Alternate Designs Having the Same
Facilities but Different Configuration 4

3. Matrix of Variable Costs, Fixed Costs, and
Capacities Required -- Example...................8

4a. A Branch-and Bound Tree Illustration 36
4b. Partial Solutions for tbe Above Illustration

(Figure 4a)............................36
5. Simplified Flow Diagram for the Branch-and-B)und

Procedure..............................49
6. Illustration for Estimating the Extent of the

Branch-and-Bound Tree Explored 52
7a. Branch-and-Bound Tree for a Test Problem.........61
7b. Variables Fixed by the Capacity Rule andI

the Bounding Rule......................61
8. Lagrangian and Other Solution Values for- a

Test Problem.. 74

vi

TABLES

1. Examples of Application Areas 13
2. Applications of Lagrangian Relaxation 16
3. Summary of ZIPCAP Options 51

4. ZIPCAP Test Results 63
5. LP and Other Solution Values for a Test

Problem 72

vii

1. INTRODUCTION

Multiactivity multifacility assignment problems arise in such

diverse areas as public health care systems and private multi-echulon

inventory/distribution systems. Such systems involve the assignment of

activities or tasks to groups of facilities in such a way that total

system cost is minimized. The total system cost haa components (fixed

costs) that depend on the facilities actuallv used as well as components

(variable costs) that depend solely on the assignment made. Most recently

[Gross, Pinkus, and Soland (1979)] there has been interest in including

facility capacity constraints as well. For this kind of problem, i.e.,

a multiactivity multifacility capacity-constrained 0-1 assignment problem,

we have developed a solution algorithm of the branch-and-bound type and

a computer program based upon it.

The computer program and guidelines for its use are described in

a-separate document [Chhabra and Soland (1980)] titled "Program Descrip-

tion and User's Guide for ZIPCAP -- a Zero-one Integer Program to solve

multiactivity multifacility Capacity-constrained kssignment Problems."

This document describes the development of the solution algorithm

and computational test results using the computer program. Suggestions

for further improvement in the solution algorithm are also included.

This chapter reviews the relevant literature, provides background

leading to the mathematical formulation of the multiactivity multifacility

capacity-constrained 0-1 assignment problem, called problem (P), and

includes potential areas of application. The theoretical base for develop-

ing the algorithm/methodology are described in Chopter 2. Various components

of the methodology are covered in detail in Chapter 3. Chapter 4 provides

an overview of the computational procedure and the computer program, whereas

computational test results are given in Chapter 5. Suggestions for further

research and potential improvements in the algorithm are included in Chapter

6.

-MON

2-

It may be noted that the basic terminology, described below,

in the formulation of problem (P) includes: activties that must be

assigned, facilities which serve the activities, designs involving one

or more facilities, fixed costs associated with tne f3cilities, and

variable costs associated with the assignment of ac:ivities to designs.

The foliowing review of the relevant literature starts with the

classical assignment problem and leads to the fo'inulation of problem (P).

Different authors have used various terminologiee in describing relevant

formulations. In the following discussion, the original terminologies

are used, and are followed by our equivalent termiaology, where appro-

priate, shown in parenthesis.

1.1 Generalized Assignment Problem

In a classical assignment problem [Hillier and Lieberman (1980)],

the purpose is to find optimal pairs of agents ard tasks or activities.

Each task is assigned to a single agent, and eac agent is given a

single task, and the suitability of a particular set of assignments

is determined by a single criterion function such as minimization of

cost. In a generalized assignment problem (GAP), several tasks can be

assigned each agent, subject to the resources available to the various

agents [Ross and Soland (1975)], e.g., assigning software development

tasks to programmers and assigning jobs to computers in a computer

network.

A variety of well-known facility location and location-alloca-

tion problems have been shown to be equivalent to, and therefore

solvable as GAP's [Ross and Soland (1977)]. Here, in general, the

tasks represent demand centers for a good or service, and the agents

represent supply centers to be established at potential sites or

locations. Each demand center must be supplied froim a supply center.

A fixed cost is incurred for each supply center established, and, in

addition, there is a cost incurred for each unit processed at a supply

center and transportation costs incurred for the units sent from supply

centers to demand centers. The problem may be "uncapacitated" -- when

there is no limit to the number of units that may be processed by

a supply c.nt cr, o "capacitited" -- when there are restrictions on the

number ol uits that may be processed. The objective is to select supply

center locations and set up a distribution assignment so that the total

cost is minimized.

1.2 ultiactivity Multifacility Uncapacitated
Assignment Problem

A salient feature of the above facility location problems is that

each demand center (activity) is assigned to a single ;upply center

(facility). Sometimes, however, it may be desirable to assign an activity

to more than one facility. This leads to the concept of "design," and

the multiactivity multifacility assignment problei [Pinkus, Gross, and

Soland (1973)j. Before describing such a problem, some terminology is

considered first.

A design involves the use of one or more facilities, and represents

a meaningful configuration of facilities along with a meaningful strategy

for using them -- as illustrated in the following ex:amples.

Consider five facilities and their locations as shown in Figure

1(a). (From practical considerations, these may be existing and/or

potential locations.) Three of the possible designs are shown in

Figures l(b) to l(d). Design 1 is completely centralized since it uses

only one facility, whereas design 3 is completely decentralized since it

uses all the facilities.

oN 0

(a) Locations for five (b) Design 1: one facility--

facilities locationQ

0 0 0o 0

(a) Design 2: three facilt- (d) Design 3: five facilities--

ties--locations 0 0 all locationsaQ

Figure 1. Examples of alternate designs

for a system of five facilities

-4

It is poss;ible for several designs to have the same facilities

but different configuration and strategies for using these facilities,

e.g. , a multiproduct multi-echelon inventory system (Gross, Pinkus,

and Soland (1979)]. Figure 2(a) shows design 1 containing certain

facilities (varehouses) at the central, regional, and local levels

or echelons. Figure 2(b) shows design 2 with the same facilities

but having a different configuration.

Level or Echelon

- - ------------Central

S---- -------------- --- Regional

- 0k0- ® --- -- Local

(a) Desigr 1 (b) Design 2

Figure 2. Exa..ple of alternative desi~,rns having
the Lane facilities bu different
conf icurat ion

The distribution of a given activity at various faailities under design 1

would be different than under design 2, depending, of course, on the

inventory policies. This results in different variable costs (described

later) for that activity under design 1 as against design 2. In fact,

it is possible to have a situation where two or more designs have the

same facilities and the same configuration but different strategies,

resulting in different variable costs. For example, one strategy might

specify an equal distribution of a specific activity over the various

facilities, whereas another strategy could impose a different distribu-

tion scheme over the same facilities.

In general, if a system is to be composed of at most p

facilities, the number of alternative designs is 2P-l if no two designs

have the same facilities. However, with the samc facilities but different

configurations and strategies, the number of alternative designs could be

much higher. In practice, it is possible to eliminate a majority of

alternative designs because of geographical, political, economical, and

other factors.

-Mra

-5-

i'le :mil t iactiv ity mulIt if ac it L ty ass ignment problIem seeks

mnfimizat oa oi some measure of total system cost such as, total

expected cost over a given time period or total discounted cost over

the lifetime of the systeri. The system cost will ;nc lude investment

costs for building or leasing the systemi, operating c-osts for operation

and i:a.intenaace of the systet-m, and the costS for prorid ing necessary

services. Both the investment costs anqd the operat-ing costs have

fixed as well as variable components [Ross and Soland (1980)]. The

fixod components include those costs associated WithA the facilities

ot a g iven design which are independent of the activitijes served.

Such costs are called fixed costs. On the other hand, the variabie

components and the service costs include those cos,:- which are

conipLet2ly dependent on the service demand of thle activities at

ovairious facilities in a given design. Such cos3ts are called

vari--blu costs,. By definition, both the fixed costs and the variable

costs are relative terms.

An equivalent formulation of the multiact ivity multifacility

assignment problem defined by Pinkus, Gross, an(, Soland (1973) is as

follows.

Let a ij variable cost of activity j using design i

b k=fixed cost of facility k (k1l,...,p)

b ik I if facility k is included in design i

= 0 otherwise.

-6

The decision variable x ij is defined as:

xij = I if activity j uses design i

= 0 otherwise.

Then, the uncapacitated assignment problem called problem

(PU) is to find x., values that:
1J

Minimize Z a.. x.. + E b b (i13 13 k k bik ijk~l ji jk=1

m

subject to E x.. = I for j=l,... ,n (2)

(PU) i=l 13

xij = 0 or 1 for all i and j (3)

where u(.) = 0 if (- < 0 j
= i if .)> 0.

The objective function of this problem coisists of two distinct

parts. The first part represents the total variabla cost, and the

second, the total fixed cost of the system. Constraints (2) and (3)

ensure that each activity is assigned to a single design. Of course,

the optimal solution may involve the use of more chan one design.

Problem (PU) is a 0-i nonlinear programmirg problem (because of

the step function u), and a branch-and-bound algorithm using linear

underestimates for the nonlinear part of the objective function has been

described in Pinkus, Gross, and Soland (1973). A huristic procedure

for this problem is given by Khumawala and Stinson (1980) in an unpublished

paper. This procedure is an extension of some earlier work [Khumawala

(1973)).

1.3 Additg_ Capcity Constraints -- Problem (P)

A weaknLss of problem (PU) is that it assum2s unlimited capacity

available at each facility in terms of the activities using a given

facility. In practice, a facility may not have the capability to

:;erve every activity, and may have restrictions as to the total

capacity available to handle more than one activity.

- 7--

Let si . i p.,' tv Ivai 110, -b .It falc ili' h kild

d capacity required at facility k for activity j
when activity j uses design i

If design i does not include facility k , then d 0 for all j

ij k

Define the decision variable Yk as:

Yk = I if facility k is used,

= 0 otherwise

Then the assignment problem [Gross, Pinkus, and Soland (1979)],

called problem (P) is to find xij and Yk values that:

m n p
Minimize E Z a.. x, + Z by (4)

i=i j=1 ij k=l
k yk

m

subject to x. = 1 j,...,n (2)
(P) i=l

m n
i=l j=l ijk ix - SkYk k=l,.,p (5)

xij' Yk = 0 or I for all i,j,k (6)

Constraints (5) of problem (P) ensure that the capacities available at

the facilities are not violated. Problem (P) is, thus, a multiactivity

multifacility capacity-constrained 0-1 assignment problem, as compared

to problem (PU) which is uncapacitated. In problem (P), constraints (2)

along with the part of constraints (6) involving the x j's ensure that

each activity is assigned to a single design. Of course, the optimal

solution may result in the use of more than one design.

For an example of five facilities and three designs as shown

in Figures 1(b) to 1(d), and four activities; the matrix [aijlbkIdijk]

is as shown in Figure 3.

1.3.1 Comparison with the uncapacitated assignment problem.

Comparison of the capacitated problem (P) with the uncapacitated

problem (VU) shows that the objective functions (1) and (4) are equiva-

lent and constraints (2) in each are the same. Constraints (5) serve

to impose the capacity constraints and at the same time, for a given

design, the relevant facilities are forced in the solution. For an

C)i
4- 1-4

U) 0

w 0 W

C14 M -I
H r0
41U

1- -4 '4C
-a *4 C)) a)l

u w C
ji 4)42)b4

-- I I-a .

I-aI

4-1)

0 J M.0 .0 En

.0-H w. 0

'-4 (a .0

U) U)

0) 4) co (

CA C Cl cn >Io~c ca .0co0 i C
Q~, -'4 C

to m -) a
W) U4 (4 ')co 0H
in C1o ('d >0 0)

--4 C1 CN C1
44. -,4 -1 CN0l

'-4 C-4 .o v4 C 4

-4 4 C14 014 C

Co C

-9-

xij equal to 1 , all the facilities with dij k > 0 ,nust have yk

values equal to 1 in order to satisfy (5) and the cerresponding fixed

costs bk are therefore included in (4). If yk = 0 and dij k > 0

then x.. must be 0 in order to satisfy (5).

Problem (P) has been formulated as a 0-1 linear programming

problem whereas problem (PU) was formulated as a 0-I nonlinear

programming problem.

Note that problem (PU) can be easily obtained a! a special

case of problem (P) by letting dij k equal I (for all j) if

design i ujes facility k , and setting all sk equal to n . In

other words, the corresponding formulation is to find xij and yk

values that:

m n p
Minimize E Z a .x.. + E bkYk (4)

i=1 j=l k= 1

m
subject to x 1 j=l,... ,n (2)

m n
(P1) k Z x < ny k=l....p (7)

i~1 j =1

Xij Yk = 0 or 1 for all i,j,k (6)

where elk = 1 if design i uses facility k

= 0 otherwise

1.3.2 Comparison with the fixed-charge location-allocation problem.

Problem (P) bears a resemblance to the well-known fixed-charge

location-allocation problem or capacitated facility location problem

[Ceoffrion (19;5); Ross and Soland (1977)]. There are, however,

very significant differences between the two. In order to point out

these differences, here is a statement of the location-allocation

problem (LA) as given by Gross, Pinkus, and Soland (1979) in a form

_10 _

similar to that of problem (P).

Find x and values that

p n p
Minimize Z Z + E bkYk (8)

k=l j=l k=1

m
subject to Z X = i j=l ... ,n, (9)

(LA) k=l

n
'1d j Xkj skYk k=l,....p (10)

j=l

Xkj > 0 , Yk 0 or 1 .or all j

and k (11)

Here Xkj represents the fraction of customer (activity) j's demand

that is supplied by a facility at location k.

The most important distinction between problen (LA) and problem

(P) is the re'.ationship between assignments and facilities. In problem

(LA) there is a direct connection between the assignments made and the

facilities required, and each assignment affects cnly one facility, i.e.,

the assignment x k > 0 has a bearing on only one of the constraints

(10) and, therefore, on only one variable yk ' On the other hand,

in problem (P), the connection between the assignments made and the

facilities required is indirect, and each assignment c&n affect several

facilities, i e., the assignment x.. = 1 bears or, all of the constraintsI.]

(5) for which dij k > 0 and, therefore, on several variables Yk

Another distinction is the relative difficulty of the two problems.

While problem (LA) is not easy to solve, branch-and-bound approaches

have been successful in dealing with it because once values are specified

for the yk V the xjk are found by solving a transportation problem.

Problem (LA) becomes more difficult if the constra.ncs xkj > 0 in (10)

are replaced by xkj = 0 or 1 in order to preclude supply of customer

(activity) j's demand by more than one facility. With this change,

problem (LA) may be treated as a generalized assignment problem and

is solvable using an efficient branch-and-bound algorithm [Ross and

Soland (1977)j. Problem (P) is more difficult than this variation

of problem (LA) because of the above stated indirect connection

between the assignments and the facilities. Even after values have

been specified for all the Yk ,problem (P) remains a difficult

0-I linear programming problem because of the interaction of the

constraints. ,1:

1.3.3 Solving problem (P).

The capacitated problem (P) has mn+p 0-1 variables and

n+p constraints, so the problem dimensions may be large from practical

considerations. For example, with m=n=30 and p=20 , problem (P)

has 920 variables and 50 constraints. The 0-1 LP computer codes

generally available are limited in terms of problem size. For example,

the code used by Gross, Pinkus, and Soland (1979) can handle up to 40

variables and 20 constraints. A better and more efficient code

[Geoffrion and Nelson (1968)] allows up to 90 variables and 50

constraints. This fact, together with the structure of problem (P)

suggests that a specialized algorithm could be developed that would

be more efficient for practical problems than the general integer

linear programming algorithms (on which the available codes are

based).

With the above background in mind, the development of the

solution algorithm and the computer program to solve problem (P)

was undertaken and is described in Chapters 2 thr)ugh 4.

1.4 Areas of Application

The solution algorithm and the computer program are designed

to solve a multiactivity multifacility capacity-constrained 0-I

assignment problem, i.e., one which can be formulated as problem (P).

The basic elements of such a problem are activities that must

be assigned, facilities and their meaningful configurations

-12-

represented as designs, the fixed and variable costs, and the

capacity rLquirements of the activities.

The furmulation (P) applies to existing and/or proposed

facilities. In other words, it is useful for a situation where the

decision may be to delete some of the existing facilities, as well as

for a situation where the decision involves a selaction out of a set

of proposed facilities.

Table 1 includes examples of areas where formulation (P) is

applicable. Within each application area, activities and facilities

are identified. The implications of designs, variable costs, and

fixed costs are apparent.

Obtaining the values of the data elements bk9 dijk, sk ,

and in particular a.. , can be a simple or a complex exercise dependingii

on the particulars of the application, and the nature of the components

comprising these elements. For example, in designing multi-echelon

inventory systemLs [Gross, Pinkus, and Soland (1979)], a.. represents
iJ

the inventory :ost of product (activity) j using echelon structure

(design) i and bk represents the fixed cost cf installation (facility)

k . The inventory cost a.. includes the cost of procurement, carrying
13

inventory, filling orders, and stockouts. The value aij , and associated

inventory stockage policies, are arrived at by solving a multi-echelon

inventory problem. In other words, for product j stocked under echelon

structure i , cptimal inventory policies are determined, at each

installatioa of the structure, which yields aij The facility fixed

cost bk includes the capital expenditure for building the installation,

along with a number of fixed costs associated with operating it, such as

administrative expenses, the expense of renting the facility (if it is

not built), .nd certain other fixed operating expenses.

In the case of designing a support system for repairable

-. 1

(1) - L

C) U-) r-0

kj ~ ~ ~ 4J -4,4 ~ C

C)C LO k ca

0 cc a

ofl)-)- r- 0* .5 :

r-C .- uf Ia. CC(n -

0)-4 - 4C 63C "))

u) lC)4 J ---,d~C
C)- U CC 0 . c

0C.- *C)n Hd CCCL
C)~~ 0C 1-4C) C -4~~

Zi CC J* CA

ov a, CC

E5 C) C) 4- H

CL AC (1) rw
1 *4- 4-.Q4-

0 wCC- 0 -. a u

o~ ~ E 0w ar~ CC- 4 C

0f C) z *HC-- Uo

La. U) *-n C(n

V) 0 0 C
I CC

C) 1c

- 14 -

items [Gross and Pinkus (1979)], ai. represents the total variable

cost if unit type (activity) j is repaired under design i . The

set of parameters taken into consideration to compute this cost for

each unit type includes such things as varying population sizes,

failure rates, average repair times, costs associated with their

repair, the pLrchase and storage of spares, the purchase of repair

channels, and cravel to depots (facilities) for repair. A computer

program is used to solve a spares and server provisioning problem, and

the results provide the basic information to compute a..
'2

Thus, in general, the data elements of problem (P) may be obtained

directly and/or by solving other related problem(s); it depends on the

definition and the nature of the components comprising these data elements

for a specific application area.

2. DEVELOPMENT OF THE SOLUTION ALGORITHM

The solution algorithm that has been developed t(solve problem (P)

is a branch-and-bound procedure which makes use of Lar ingian relaxation

as a basic step.

This chapter considers two different Lagrangian relaxations of

problem (P), their general characteristics, and sonpe useful results leading

to the specific case of Lagrangian relaxation util:zed in the solution

alIgo r i nun.

2.1 Lagrangian Relaxation

Taking a set of "complicating" constraints of a ganeral mixed-

integer program into the objective function in a Lagrangian fashion (with

fixed multipliers) results in a "Lagrangian relaxation" of the original

problem [Geoffrion (1974)]. The relaxed problem is easy to solve compared

to the original problem, and provides a lower bound (for minimization

problems) on the optimal value of the original problem.

Although the use of Lagrangian relaxation in discrete optimization

has been reported prior to 1970 [e.g., Lorie and Savage (1955), Everett

(1963), and Gilulore and Gomory (1963)], the "birth" of tle Lagrangian

approach as it exists today [Fisher (1978)] occurred in 1970 with the

successful application of Lagrangian relaxations to the traveling salesman

problem [Feld aad Karp (1970, 1971)]. This was followed by application

oF Lagrangian relaxation to scheduling problems [Fisher and Schrage (1972),and

Fisher (1973, 1976)], the general integer programming problem [Shapiro

(1971), and Fisher an] Shapiro (1974)] and the generalized assignment problem

[Ross and Soland (1975)]. Table 2 lists the applications of Lagrangian

relaxation as given by Fisher (1978). A review of Lagrangian relaxation

is also provided by Shapiro (1977) and Christofides (1980).

- 15 -

- 16 -

TABLE 2

APPLICATIONS OF LACRANGIAN RELAXATION

Problem Researchers Lagrangian Problem

TRAVCLING SALESMAN

Symmetric Held & Karp (1970, 1971) Spanning Tree

Asymmetric Bazarra & Goode (1977) Spanning Tree

Symmetric Balas & Christofides (1976) Perfect 2-Matching

Asymmetric Balas & Christofides (1976) Assignment

SCHEDULING

njm Weighted
Tirdiness Fisher (1973) Pseudo-Polynomial

1 Machine Weight Dynamic Programming

Tardiness Fisher (1976) Pseudo-Polynomial DP

Power Generation Muckstadt & Koenig (1977) Pseudo-Polynomial DP
Systems

GENER AL IP

Unbounded Variables Fisher & Shapiro (1974) Group Problem

Unbounded Variables Burdet & Johnson (1976) Group Problem

0 - 1 Variables Etcheberry, et. al. (1978) 0 - 1 GUB

LOCATION

Uncapacitated Cornuejols, Fisher, &
Nemhauser (1977) 0 - 1 VUB

Capacitated Geoffrion & McBride (1977) 0 - 1 VUB

Databases in
Computer Networks Fisher & 1lochbaum (1978) 0 - 1 VUB

GENERALIZED ASSIGNMENT

Ross & Soland (1975) Knapsack

Chalmet & Gelders (1976) Knapsack, 0-I GUB

SET COVERING--PARTITIONING

Covering Etcheberry (1977) 0 - 1 GUB

Partitioning Nemhauser & Weber (1978) Matching

*Source: Fisher (1978)

-17 -

2. 1.. Relax in. Problem (P)

By dividin, constraints (5) by sk and letting r = d
kijk ijk/sI,

problem (P) can be restated as follows.

m n p

linimize Z Z a. x_ + ' bkyk (4)
i-I jl 1J i k=-i

m

subject to L x i j=.. n (2)

(P) ii

m n
Z1 2 r x . < Y k=l,...,p (5')

i=i j= ijk -

xij' Yk = 0 or 1 for all i,j,k (6)

A Lagraogian relaxation (LRu) of problem (P) relative to constraints

(2) is obtained as

m n p n m1

Minimize LE Za.. x. + E b yk u j E X.. - 1) (12)
i=1 =1 1k=l j=1 i=/

m n

(LR subject to E 21 r.. x- < Yk k=l,...,p (5')
i=l j=l 1jK ii -

xij' Yk = 0 or I for all i,j,k (6)

where the u. are Lagraitge multipliers; it follow's that the

optimal value of problem (LR u) is a lower bound on the optimal value of

probl2m (i), i.e., Z(LR) < Z(P) . We will continue to use this notation
U -

in which Z(.) is the optimal value of problem (.).

Another Lagrangian relaxation (LRv) of problem (P), relative to

constraints (5'), is obtained as

Mininize E a x. + X b yk - ZV (Y E E x ii J j j k yk k % i j i j

subject to (2) and (6), or equivalently,

'Minimize z X x.. aij + E Vk rij k) - Yk (vk - bk) (13)

(LRy) subject to E x 1 j= ... (2)

i i

xij' Yk 0 or 1 for all i,j,k (6)

where the vk are non-negative Lagrange mLltipliers; it follows

that Z(LR_) < Z(P)

2.1.2 General Characteristics

A Lagrengian relaxation provides a lower bound on the optimal value

of the orginal problem, i.e., in our case Z(LR u) < Z(P) and Z(LR v) ! Z(P)

The usefulness of a Lagrangian relaxation depends 3n the closeness of this

lower bound to the optimal value of the orginal pr)blem. However, the

relaxation must be "easy" to solve relative to the orLginal problem. We

observe that the optimal value of yk in problem (Lkv) is 1 if

(vk)> 0 and 0 if (vk - b k) < 0 , and then prollem (LRv) reduces

to n 0-1 "multiple choice" problems which are very easy to solve.

On the other hand, problem (LR) reduces to k 0-1 knapsack problems.u

However, these problems are not independent because of the interaction

of constraints (5') and the indirect relationship described earlier in

Section 1.3 between the assignments and the facilities. In view of this

complexity, relaxation (LR) will not be considere6 further.U

The choice of Lagrange multipliers in relaxation (LR) shouldV

be such that Z(LR) is as large as possible and hence as close asV

possible to Z(P) in view of the relationship Z(L v) < Z(P) . In other

words, an equivalent problem is to find a vector v "representing vl, v 2,

... Ivk) to

r"5

-19-

M iximize [Z (lRv)] (4

0))v'
V '> 0

Obv ionsly, Z(LR) < Z(D) C Z(P)

The general properties of Lagrangian relaxaticn have been well

described in the literature [e.g., Geoffrion (1974), Geoffrion and McBride

(1978), and Fisher (1980)]. Some of these properties relating the

Lagrangian relaxation and the usual LP relaxation are stated below.

The LP relaxation (P) of problem (P) is obtained by relaxing the

int .!grality constraints (6), i.e., the formulatioit (P) is

m n p
Minimize Y Z a.. x.. + Z bky k (4)

i=l j=l ' k=1

m
subject to E x . I j=l,...,n (2)

i=l

(-;) m n
Z rijk xij Yk k=l...,p (5')

i=1 jil

Yk < I k=l,... ,p (15)

x' Y >- 0 for all i,j,k (16)

Note that the constraints x.. < 1 are implicit in constraints (2).

Also consider the following partial convex hull relaxation (P*)

of problem (P).

m n p
1inimize Z a.. x. + Z: b (4)=1 Jl i3 J k 1 bk k

([*) m n
subject to Z X rijk xij < Yk k=l,...,p (5')

i=1 j=l

xij, Yk C convex hull {(2), (6)) (17)

- 20 -

Thea the relationships between tle optinwal values of various

problems [Geoffrion and McBride (1978)] are as follows.

Z(P) _ Z(IR-) < max Z(LRv) Z(D) = Z(*) < Z(P) (18)
v > 0

ou ^U 'Al '

where v are the values v,, v2 ,.. .,vp of a dual optimal solution

of (P) c3rresponding to constraints (5').

Thus, the optimal dual solution associated with the usual LP relax-

ation furnishes a choice of Lagrange multipliers sucli that the associated

Lagrarigian relaxation is at least as tight as the usual LP relaxation,

and generally a good deal tighter and even as tight as the partial convex

hull relaxation.

Since Z(D) = Z(P*) , the quality of the bound obtained from the

Lagrangian relaxation depends on where Z(P*) lies in the range between

Z(P) and Z(P) . It turns out that problem (LR.) possesses the

"iitegrality property," i.e., the optimal value of problem (LR v) is not

altered by dropping the integrality conditions on its variables and

therefore [Geoffrion (1974)]

Z(D) = Z(P*) = Z(P) (19)

Thus, the Lagrangian relaxation (LR) is no better than the LP
V

rvlaxation (P). On the other hand, Lagrangian relaxation (LR u) does

not possess the integrality property and, hence, couic provide an equal

or better bound than the L relaxation (P) ; but the computational

difficulties do not favor pursuing formulation (LR)u

It is possible to consider alternative formulacions of problem

(P) wit|h the obje-tive of obtaining tighter bounds. This aspect is

discus:;ed in Chapter 6.

-21 -

2.2 Some lKcS-uLS

We now turn to the basic question of choo,.ing Lagrange multip1liers

v so that (I.R) is optinal to the extent posaill,-,, which is equivalent

to solving problem (D). We also need to consider tW s question when some

of the xij and yk variables have been assigned values of 1 or 0, i.e.,

at a node other than the starting or "root" node in tho branch-and-bound

tree. For this purpose, some terminology is defined and formulations

corresponding to problems (P), (LK) and (D) are first developed. Then
V

some important results pertaining to the choice o; Lagrange multipliers

will be proved. Gavish (1978) provides a method of obtaining the 'best'

multipliers, based on solving an equivalent linear prograrmming problem.

Such a formulation is difficult in our case, and, besides, we propose

to avoid solving LP problems in our branch-and-bound procedure.

Define the sets

S = {(i,j)ixij has an assigned value of 1 or 0} , and

T = 'kyk has an assigned value of 1 or O}

hese sets represent the partial solution of problem (P) and the variables

contained in these sets are termed fixed variables. [Geoffrion (1967)].

Let S and T represent the corresponding complementary sets, i.e.,

comprised of the xij and Yk variables, which have not been assigned

specitic vilue ;nd, therefore, are called free variables. A corpletion

of a partial solution is defined as a solution that is determined by

S and r together with a binary specification (0 or 1) of the values

of the free xij ad k variabtec: from sets S and T

Let SUS S and TUT = T

,onsider a partial .oiluz ion to problem (P) in which specific values

(of I or 0) are assigned to some of thc xij and Yk such that

-22-

m x ij <l vi
i=l ij'

(ij)ES

and ZY r xijk x i j < Yk VkCT

(i,j)CS

r ijk xij VkET
(j(i'j)CS

ana such that xI.j = I ad eik = 1 imply tnat kET and Yk

Recall that, by definition, elk - 1 if design i uses facility k

and elk - 0 otherwise.

The problem of finding an optimal completion of the partial

solution of problem (P) can be stated as follows.

Minimize E Z aij xii + Z b + Z a x + E bkYk

i j - - k y i j k(20)
(i'j)CS kcT (i,j)ES keT

subject to x = 1 - x VJ (21)

(p) (i,j)ES (i,j)cS

- rik xij _Yk < Z E rijk j Vk (22)
ij ij

(i,j)ES (i,j)S

x = 0 or 1 V(i,j)eS , kET (23)

We call this problem (P9) where k indicates the node in the branch-and-

bound tree.

A Lagrangian relaxation of problem (P9) ith respect to constraints

(22) is obtained by introducing non-negative Lagrange multipliers vk

k-1,2,...,p ; the relaxation is then

-23-

Minimize X j a x + Z bkyk + aij xiJ + L bkYkSj, 'j 13 k- kk kk
(ij)ES keT (i,j)ES kET

-Z vk [k r x -j ksj rijk xij1 (24)
k - ij i j

(i, j)CS (ij) ESij

subject to x.. = 1 - x. VJ (21)
i13 13

(i,j>gS (i,j)ES

x ij' Yk 0 or 1 V(i,*)ES , kET (23)

Rearranging (24), and using the relationship T = TUT, we have problem

(LR,v)

Minimize " x +Zij k + i + v ki jkCT ij kET 1
(i, j g E; (i'j)CS

- k T Yk k bk) -kT Yk (vk - bk) (25)
(LR ,) kT \

subject to x.. =1- x.. Vi (21)
i 1j i 13

(i ,j)jS (i,j)cS

xi'k 0 or 1 V(i,j)ES , kcT (23)

Then wt have Z(LR v) < Z(P) An important probtem is the choice of

Lagran;u ,nultipliers VV 2 ,. ..., v , represented by vector v , that

maximize Z(LR'v)' i.e., the problem (Dz)

Maxiinize [Z(IR ,)] (26)

(T)) 0

- 24 -

We now state and prove some theorems related to the choice of Lagrange

multipliers v ,v2 ,... ,v p

Theorem 1: There exists an optimal solut-on to problem (D) in

which v k > bk for all k

Proof: Suppose v < bI , in an optimal solution to problem

(D), i.e., Z(D) Z(LR *) where 11* < b
vI

Recall that

Z(LR*) Min Z xi (a.. + Zv* r .~ y'* bk)

ij i k kkjk/k k

s.t. x.. = 1 Yj (2)
i ii

xij' Yk = 0 or 1 Vi,j,k (6)

For v* < b1 , the optimal value of y, is 0 , and the term - y, (v - b 1)

in the objective function is 0.

Consider what happens if we increase v1 to b Call the
I I '

resulting vector v . Consider problem (LR v) . The optimal value of

Y. in problem (LRv) is 0 or 1 , and the term - y1 (v1 - bl) is 0

However, the optimal value of yk is the same in ptoblems (LR *) and

(LRv) for all k > 1 . Therefore, the quantity E yk (vk - bk) is the
k

same at the optimal solution for both v = v* and v = v .

Since v > v* , we note that in the objective function,

P P

a v r k >a +E v*r
ij k=1 aijk ij k-i i,j

and therefore (LR) > Z(LR v*)

V

25 -

It tollows that there is an optimal solution to problem (D)

in which v > b

Since the choice of k=1 was arbitrary, the same result holds for

any value of k, k=l,...,p ; hence, there exists an optimal solution to

problem (D) in which v k > b k for all k .

Theorem 2: There exists an optimal solution to problem (D,) in

which vk > bk if (i) kcT or (ii) kcT and Yk 0

Proof: Suppose v 1 '. b in an optimal solution to problem

(Dz) , i.e., Z(D) = Z(LR,,) where v* < b

Then k=l can he such that kLT or kcT

Case (i): Let kcT

Recall that

Z(LR ,v*) = Min Z 2 x aij + Z v*r
ij ij kkijk

(i,j)CS

+ z z x (a + E v k rij ki j ij ij kk j

(ij)CS

- Z Y v - b E
kscT k (kCT k(Vkbk)

s.t. Z x. = I - x. Vj (21)

(ij)cS (i,j)CS

xij' Yk = 0 or I V(i,j)CS kcT (23)

For v I < b, ard kcT the optimal value of y1 is 0 and the

term -Yl (v- b1) in the objective function is 0 .

Let v * bt! increased to b ; call the resulting vector v

Consider problem (LR,v) .The optimal value of y in (LR2,v) is

0 or I , then the term -y 1 (vl - bl) is 0. For k > I , the

optimal value of yk being the same in (LR ,) and (LR ,v) , we

find that E yk (Vk - bk) is the same at the oltimal solution for both
ktT

I

v v and v = v . But v > v I ; therefore

a.. + Z v r > a.. + E v* r V(i,j)cS and (i,j)cS
I E1-k ij k - J kcT k ijkk1 k 1

Hence, Z(LR) > Z(LRv) , wherefrom it follows that there is an
,v -- v

optimal solution to (Dk) in which vI > b I S-nce the choice of

k=l was arbitrary, the same results hold for any value of k, kcT

Hence, there exists an optimal solution to problem (Di) in which

v, > b for all kET.
K-k

Case (ii): Let kcT and y, = 0

Considering problem (LRr *) , for k = 1 , < bl 1 and
V

= 0 , tle term - yl(v* - bl) in the objective function is 0

Increase v I to b and call the resulting ve:.tor v The

term - y(v - b) is 0 . For k > I , the optimal values of Yk

are the same in problems (LR kv*) and (LRk,) Therefore Z
_ kcT~

Yk(Vk - bk) is the same at the optimal solution for both v = v*

and v =v Since v1 > v

.i. + Y. v r > a.. + Z v* r V(i,j),S and (i,j)cS
1. kk ijk - T k ijk

Id

- 27 -

Therefore Z(LR,) > Z(LR£ *) it follows that there exists an optimal

solution to (Dz) in which vI > b. The choice of k=l being arbitrary,

the same results hold for any value of k , kcT a nd yk = 0 ; which proves

case (ii) of the Theorem.

It may be added that there is another possibility which complements

case (ii) of Theorem 2, i.e., if kCT and y = 1 . We treat this possi-

bility as a conjecture since result similar to the one above could not

be proved, as discussed now.

1.'ith Y, = I and v - b we observe from problem (LRI,*)

that for a solution vector X* (with elements x. .*) and Y* (with

elements YI yV*1 *= 1 and ..*.,y 0 or I)

Z(LR,) Z x..* (a.j + v* rijl + v r
v i j 1 j k>l k rijk)

(i,j)CS

+zzx.* (ai. + vl* r +I i V)i j jrilk>l rj

(i,j)ES

- k k (v* - bk) - yl(Vi*- bl)-k l (v bk
kCT / >l k(;

kcT

Since vi* < b and Yl = 1 the term -Yl(V1 - bI) is positive.

If we raise v1 * to bi , say v , the term - yl(vl - bI) is 0 .

The difference between Z(LR ,v*) and the object-ve function

value of problem (LR. v) with X=X and Y=Y is

x. v v* r + (- v) x.i. b r
jj

= (b 1 - v 1 *) I L x ij* (b - v *) r ij Ii j

This difference can be either negative or positive, aild s) we cannot

conclude that there is an optimal solution to problem (D in which

_ 2 - -

v > 1 We bulive this conclusion to be false.

Theorem 3: Let (X, Y) solve problem (LRv) for v k = bk

for all k . If (X , Y) is feasible for problem

(P), there exists an optimal !;olution to problem (D)

in which v k = bk for all k.

Proof: In view of Theorem 1, there exiqts an optimal solution

to (D) in which vk> bk for a'.! k , i.e., v > b.

Let v be such an optimal v . We will show that

Z(IRv) < Z(LRb) , from which it follows that v = b

solves problem (D)

Recall that

Z(LR) i x.. a ij+ r k jk - k (k b k
_y X,Y i j \J k rki

s.Et. Z x = 1 Vi (2)
i

x Yk = 0 or I Vi,I,k (6)

Since v > b , k 1 Vk is an optimal choice.

Hence, Z (LR) Min xi. (+ r j - bk)

s.t. Y x.. = 1 VJ (2)

i ii

x i = 0 or I Vi,j (6a)ij

Now consider (LRb) . Since v = b , the lIst term of the objective

function drops out, and we have

Z(LRb) = Min Y x a + 11 bk

X,Y i j ik

subject to (2) and (6)

- - _ _ _ _ - - jr

-29-

x Nm x (ai + bk r k
x i j J k

subject to (2) and (6a)

i x I* i + Z bk r ik)
i ij ij k

where X* with elements x. * is the miPimizing solution vector

which satisfies (2) and (6a)

Now (X , Y) feasible for (F) implies that

7J xi* ij k < k* < i Vij

Hence, 5 - bk) 2 xF * r. < k - bk)k i j i ijk

or Kk - bk) L x i j * rijk -Z (vk - b; - 0 (27)

k i j i kt t)
Rewriting, Z(LR Mi E1T 2. x [a., + r.. fb +f(bk\))l

x i j ii i k ij\

- (- b,,k

subject to (2) and (6a)

Min Z (aij + Z ri.k bk)X i j (aj ij k

+ E (v k - bk) Z ij rijk- E (v - bk)

subject to (2) and (6a)

= 2x..* (aij +2 k k)xi j i j
+ L r i kb k

+ k z Vk - bk) .Z xi j * rij k -K (k
- bk)

< X x * (a + Z rijk bk) Z(LRb)
j ij ij kk

-30-

by (27), or Z(LR) < Z(LRb) ; it follows that v b solves

problem (D).

2.3 Relaxation (PR)

Theorems I and 3 are useful in providing a choice of Lagrange

multipliers as a starting point in solving a relaxation of problem (P)

at the root node. Theorem 2, similar to Theorem 1. provides results for a

a partial solution of problem (P), i.e., at a node other than the root

node where some of the xij and yk have been fixed at 1 or 0 .I

Theorem 1 is important in pointing out that a certain set of Lagrange

multipliers v such that v > b for all k would provide an optimal
k - k

choice. Theorcm 3 narrows this choice to vk = b for all k for a
k

specific situation, i.e., when the resulting solution is feasible for

problem (P).

Letting vk = bk for all k ,problem (LR) becomes:

Minimize c. . x . (28)

(hab) subject to E x.. = 1 VJ (2)

b 12

x.. = 0 or 1 Vij (6a)

where c.ij = aij + E b. .r (29)

Note that problem (LRb) is very easy to solve; its optimal value is just

the sum of the minimum (over i) c ij for all j , i.e.,

Z(LRb min {cij } (30)
j i

We solve this problem as a starting point at the root node in our branch-

and-bound procedure.

- 31 -

As. move LO other nodes by fixing some of the variables, we

muSt deal with problems having the form of problem (P) instead of

problem (P). The appropriate relaxation is then pr,,blem (LR'v) whose

optimaL value Z(LR) is the lower bouxd required at node . Our

algorithm bran1chcs only on x.. variables and uses tne constraintsii

(5') to f i. appropriate v variables at values -f I . More precisely,'k

if x.i. is fixed at l and ek I , then yk must be 1 in every

feasibLe completion of problen (P) so we can include the index k in

T and fix Yk at I To account for the various possible combinations

of i and j , we d define

C(I =Z I if x. e. > 0 for any (ij)CSIJ !K '

= 0 otherwise

At any node '. then, yk is fixed at 1 and k T if = I.

There is another way in which it is appropriate ':o fix Yk at

I at node . It the avaiJable cl;oice of designs for some activity j

requires the use of facility k , then Yk may be set to I Formally,

define

W {J (i,j)LS and x.. = 1 for some i} (32)

and its complement W . Then define

[".= 1 if 2; m n d.
i- i ijk > 0

(i,j)Fs (33)

= 0 otherwise

Th,-n yk is f ixd at I and k,-T if k = 1 It is convenient to

combine these two otaLions in torcin;z yk to I Define

_4A .

- 32 -

k ax { otkZ , kk 1 (34)

so Yk is fixed at I and kCT if 6k = 1.

To return to the relaxation, problem (LRZv) we must make a choice

of the vector v of Lagrange multipliers. Of course, we would like to

use an optimal choice, i.e., a vector v that solves problem (Di)

Recall, however, that Theorem 2 did not provide us any useful information

about the optimal value of v k if keT and yk 1 . To simplify our

approacii and have recourse to the results of Theorems I and 3, we choose

vk = 0 if kET and yk = 1 . Note that there a-e no kcT such that

Yk = 0 because of practical considerations and
becaise our branching rule

only results in fixing Yk values at 1 . Problem (LRZv) now takes the

form

011>Iinii :e x ij a v k r ik) y1 k(vk - b\4k)E (35)

(,R,) subject to E x.. = 1 I (6)
i 1J

Xij' Yk 0 or 1 for all (i,j)CS , kcT . (23)

Note that in this problem (LR -), Vk= 0 if kcT Also note how closely

it resembles problem (LR v), the relaxation at the root node. As in that

case, we would like the lower bound Z(LR, -) to b-2 as large as possible,

i.e., we seek v to

Maximlze [Z(LR,)] (36)

(DT) v > 0)

Because of the close similarity of problems (LR ,) and (LR)

it is possible to obtain results about problem (DI) that are analogous

to those obtained about problem (D). We state these results as Theorems

4 and 5. Their proofs are omitted because they follew precisely the

pruot s of Theorems I and 3, respectively, and their validity follows

from the fact that problem (LR, -) is essentially the same as problem
'V

(L'1 v) but involve. only the free variables.

'lhcor -I 4: There exists an optimal solution to problem (DT)

in which v b k for all kcT

Theorem 5: Let (X , Y) solve problem (LR9 ,v) for

Vk = bk for all kET . If (X , Y) satisfies

(5') for all k-T , there exists an optimal solution

to problem (DT) in which v k = b k for all kcT

Just as Theorems I and 3 motivated us to use the relaxation

problem (LR b) to obtain our lower bound at node 1 , Theorems 4 and 5

motivate us to set Vk bk for all kET in relaxation problem (LR9 v)

to obtain our lower bound at node Y. . With this specification, problem

(LR,) becomes

Minimize cj xj + FCZ (37)

(PR) subject to X: x.. . I Vi (2)

x.. = 0 or 1 V(ij)ES , (23a)ij

where

cjZ = a.. + ", bk rijk

a + Z b1 (- 'k9)rfjk (38)
k=1

and the fixed cost FC is given by

FC b = 6 b (39)
x k kZ kkCT k=l

- 34 -

This specific relaxation, problem (PR), is oi the same form as

problem (LR,) and is equally easy to solve in one pass. Its optimal
J

value Z(PRz) serves as the lower bound at node 0 Note that for k=1

problem (PR) is the same as problem (LRb)

It is clear that setting each Lagrange multiplier v k to b k

for keT and to 0 for keT is not generally optimztl in terms of

achieving the tightest lower bound (except as per Theorem 3). But it

provides a gnod starting point in seeking an optimal vector v and it

provides an easily calculated lower bound at each node of our branch-

and-bound procedure. The question of how to improve upon this choice

of multiplier values will be discussed in Chapter 6.

3. MET'ODOLOGY FRMIEWORKj

The branch-and-bound procedure/metlodology developed to solve

problem (11) uses Lagrangian relaxation (PRz) as a basic step. The

branching rule dictates which xij variable to branch on at each node.

in addition, there are certain rules (e.g., the capacity rule and the

bounding rule) which contribute, significantly, in improving the overall.

efficiency of the procedure.

Some basic terms such as fixed and free vaiiahles, partial solution

and its completion were introduced in the previous chapter. This chapter

first provides a preliminary discussion of the branch-and-bound methodology,

[Geoffrion (1967), and Geoffrion and 1larsten (1972)]. .Representation and

storage of the x.. variables for branching and backtracking is described

in order to proxide continuity and consistency with the computer progran

covered in Chapter 4. This is followed by a description of the major

components of the branch-and-bound methodology.

rdnchinrg and backtricking is done on the x.. variables. The

branching commences by I ixing the x i variable (selected by the branching

rule) to I and mov ing to the left branch node. When backtracking, we

fix the correjponditig xi, variable at 0 and move to the right branch

node (if the rignt; branch node has not already been explored). An x..
ii

variable can also be fixed at 0 or I by rules other than the branching

rule. The capacity rule and the bounding rule are two such rules employed

in our methodology.

Figure 4a shows a branch-and-hound tree. The x.. variables fixed

at 0 or 1 at any node due to rules other than the branching, rule are

shown in parenthesis at the appropriate node.

-35 -

- 36 -

x 1 3=1 x 13= 0

4Left Branc ight Branch

X42 0

x24= 24=0

5 6

Njode 0 is the root node and also the par.'nt
node for nodes

GQand 0
is the parent node for nodes Q and Q, etc.

Figure 4a.

A branch-and-bound tree illustration

Node () Partial Solution (S.)

2 (103, - 301, - 401}

3 {103, - 301, - 401, 4021

4 1103, - 301, - 401, - 402, - 201, 1011

5 t103, - 301, - 401, - 402, - 201, 101, 2041

6 {103, - 301, - 401, - 402, - 201, 101,-204}

7 {- 103}

Figure 4b.

Partial solutions for the above illustratioo
(Figure

4 a)

- 37 -

For problem (PR) , a partial solution corresponding to set S at

node Z , i.e , S contains x.. variables assigned values of I or
.z ii

0 . For simplicity in the computer program, an x., variable fixed at

1 is represented as (100 i + j) whereas an x., variable fixed atIj

O as - (100 j + j) , e.g., x32 1 and x32
= 0 ave represented as

302 and - 302 respectively. Since branching is done on xij variables,

it is necessary to make a distinction between x.. variables fixed at I

due to the branching rule and those fixed at 1 due to the other rules.

We make this distinction by underlining the posilive number to represent

an x.. fixed at 1 due to the other rules. For example, 204, - 301,
i3

103 represent, respectively, x24 = 1 due to the branching rule, x31 0

due to the branching rule or any other rule, and x13- 1 due to a rule

other than the branching rule.

Figure 4b shows tile partial solutions Sk of the branch-and-bound

tree in Figure 4a.

Implicit enumeration involves generating a sequence of partial

solutions and simultaneously considering all completions of each. For

our minimization problem, we start with an initial solution having a

very large value (infinity) as an initial upper bound. As the computations

proceed, feasible solutions (those satisfying the capacity constraints)

are discovered from time to time, and the best one yet found is retained

as an incuimbent solution with the corresponding value as the best upper

bound. It may happen that for a given partial solittion S we can

determine a best completion of Sk , i.e., a feasible completion that

minimizes the objective function value among all feasible completions

of S £* If such a best feasible completion is better than the best

upper bound, then it replaces the latter. Or we may be able to determine

that S has no feasible completion better than tha incumbent. In either

cast,, we can fathomn S . (Various situations of f-ithoming and back-

-moon"

-38-

tracking in our branch-and-bound procedure are de3cribed in the

following discussion.) All completions of a fathoied partial solution

S have been implicitly enumerated in the sense that they can be

excluded from further consideration (with the exception of the relevant

best feasible solution of S£ if it has been retained as the best

upper bound).

In our branch-and-bound procedure, at any given node where we can

fathom S. , we backtrack to the parent node and move to the right-hand

branch (if that branch has not already been exploted) by fixing the

appropriate x.. variable at 0 . However, if the right-hand branch

has already been explored, we continue backtracking to a parent node where

we can move to a right-hand branch. For example, in Figure 4a, when

backtracking from node 3, we move to the parent node 2, and to the right

to node 4 by setting x4 2 = 0 . However, when backtracking from node 6,

we move back to node 4, then back to node 2, then back to node 1, and to

the right to node 7 by setting x13 = 0 .

On the other hand, if the partial solution Si cannot be fathomed,

we branch to the left and augment S£ by fixing a free variable x., at

I (based on the branching rule), and then we try t:o fathom the resulting

partial solution. In addition to the one variable selected by the

branching rule, some other free x,° variables can also be fixed at

0 or 1 according to the application of rules other than the branching

rule. Note that this can also happen when backtracking, i.e., when

S has been fathomed and we backtrack and move to the right by setting

the appropriate x.. variable to 0
IJ

Let us consider examples of both situations, i.e., when S

has not been fathomed and when S has been fathomed. In Figure 4a

we cannot fathom S (i.e., S at node 1), so we move to node 2 by

- 39 -

augmenting S. by fixing x 1 3 I based on the branching rule, and

by fixing x 3 1 = 0 and x41 = 0 based on the aoplication of the other

rules. Similarly, we move from node 2 to node 3 by augmenting S 2 by

Lixing x., I . As an example of backtracking, wher we fathom S 3

we move back to the parent node 2, and to the right to node 4, getting

a new partial solution S, by replacing x 1 with x42 = 0 , and

further augmenting it by fixing x 1 0 and x 1 1 1 based on the

application of the other rules.

Cimputationally, the storage and update of partial solution S

is easily accomplished by conisidering Figure 4b. If, at a given node,

the partial solution S has not been fathomed, e.g., at node 4,

determine the next branching variable by using the branching rule,

i.e., x., , and augment S4 by adding 204 as the last entry. Also,

augment S4 with any other free xij variables, if appropriate,

depending on the application of the other rules. Now, consider the

case where the partial solution S has been fathomed, e.g., at node 6,

and we backtrack; starting with the last entry in S . we consider one

entry at a time, going backwards, until we find a posilive number which

is not underlined. In our example, it is 103. In othir words, we must

branch to t,': right by fixing X13 = 0 , i.e., we replace 103 with - 103

and we are at miode 7. Should we find that we have no positive number,

the procedure terminates since we are back at the root node and the

ri,ht branch has already been explored. This happens when backtracking

from node 7.

In the branch-and-bound procedure we generate a sequence of

part i,l s olutions as we move from one node to another. This sequence is

n ,i- reduod. nt il the sense that no completion of a partial solution

evor dupl icate; .i completion of a previcus partial solution that has

been fatlbomed.

'AS

40 "

Since one of the x values, for each j , must be I , a total of

i
(2m-l)" nodes are theoretically possible for complete enumeration.

However, most of the solutions may be infeasible because of the capacity

constraints. The branch-and-bound procedure, thro-gh a judicious choice

of branching variables, and elimination of certain infeasible and non-

optimal assignments through various rules, turns out to be a practical

and computationally efficent algorithm. The variou3 components of this

procedure ate lescribed next. Detailed procedural steps and the solution

of a test problem will be covered in Chapter 4.

3.1 Bounds

3.1.1 Lower Bound

At a given node Z in the branch-and-bound tree, a lower bound

(LOWB) is obtained by solving relaxed problem (PR)

LOWB = Z(PR) (40)

Recall that problem (PR) is very easy to solve by considering the

minimum c ij over those J's for which xij is n-t fixed at 1

i.e., jEW , where W is the complement of W defined by expression (32).

Z(PR) E c + Z min c +FC. . (41)
jEW iji i E

(i,j)ES

where c ij is given by expression (38), i.e.,

cij= a,, + E bk (I - 6 kZ) rij 1 , (38)
k

and the fixed cost (FC) is given by expression (39), i.e.,

FCZ 7 6 b (9. Ik k' (39)

where kk is given by expression (34).

J

Note that it none of the x.. variables is fixed at I , as is

genorally the case at the root node, then all 5kl 0 , and, therefore,

p
FCi = 0 , and cij, = aij + Z bk r i j k Z(PR) is, then, simply the

I iji ~~ k=lkij1

middle part of expression (41). Uc use the term "generally" because

it is possible that the capacity rule could force certain x..

variables to I (or 0) at the root node, prior to sov4ng the relaxed

problem (PRI)

3.1.2 Upper Bound

At any given node i , let X = {x.. represent the solution of
ii

problem (PR) . if this solution is feasible for problem (P), i.e.,

if X satisfies the capacity constraints (5) or (5')

d ijk xij sk Yk Vk , (42)j
x. .tX

whorc yk = I if Z i dijk xij > 0
i j

x. .tx (43)
'Ij

= 0 otherwise

then the value of problem (P) corresponding to this solution

gives an upper bound (VPB):

UPB L . x.. + Z b ,kyk (44)

i j 12 k

x LX

where yk is defined by (43)

3.1.3 iPest Upper Bourd

A current [o%,ci- t upper bound is retained as the test upper bound

(BUB), the correspondiu u solution X representing the incumbent solution.

42

The branch-and-bound procedure is initiated by assumfrng a very large

value as the best upper bound, and is replaced by better (lower) values

as the procedure continues.

A positive fractional value c can be specified if a sub-optimal

solution is acceptable. For example, for c = 0.001 , the resulting

solution value is guaranteed to be within 0.1 percent of the optimal

solution value. When c is non-zero, the adjusted best upper bound (BUBS)

is defined as:

BUBS = BUB/(l + 6) (45)

Obviously when 6 = 0 , BUBS = BUB

3.2 Facility Usage Rule

This rule is used to identify facilities forced into usage at a

given node Z and hence fix corresponding free varia'jles Yk at I

For a partial solution S. , define

djkk = dijk if jEW

(46)

= min d if j EWd ijk
i I

(i,j)ES

The facility usage rule states that for any facility k , where

is not already fixed at 1 , if E djkZ > 0 , tnien facility k is
-3

forced into usage and, therefore, yk should be fixed at 1

This rule is applied at every node prior to applying the capacity

rule. In other words, this rule is applicable to capacitated as well as

uncapacitated problems.

3.3 Capacity Rule

This rule is designed to "exclude" infeasible assignments prior

to solving the relaxed problem (PR 2) This is done by exploiting the

- 43 -

relationship between the capacities required (d i k) and the capacities

available (s,) for a ,ivn partial solution of problem (P).

The capacity rule states that for a facility k and an activity

j ,"exclude"a free x.. variable (i.e., fix it at 0) for which

(dijk - d jk) > (s is k d (i j) S (47)

where d jk is defined by expression (46). The right-hand side of this

inequality (47), when positive, represents the available capacity at

facility k . The left-hand side shows, for a given j , the difference

between a dijk corresponding to a free x.. vriable and djk.

If, for a specific dij k , this difference is more than the available

capacity, the corresponding free x.. variable, if fixed at 1 , would
'2

result in an infeasible solution. Thus, by looking ahead, we can exclude

such a free x.. variable by assigning it a value of 0 .

Note that if the right-hand side of expression (47) is negative,

then any completion of such a partial solution will be infeasible and

we backtrack in our branch-and-bound procedure.

The capacity rule is applied to all the facilities by considering

one facility at a time. The cycle of examining all th(facilities

continues until no more assignments can be excluded. During the course

of application of this rule, if all but one of the free x.. variables

have been excluded (fixed at 0) for a given j , then that particular

x.. variable is fixed at 1 because of constraints (2), i.e., each

ij

activity j must be assigned to one and only one design i . The

partial solution is updated accordingly to reflect the x variables
ij

fixed at 0 or I due to the application of the capacity rule.

The capacity constraints for an uncapacitated problem are not

active. Hence, the capacity rule is useful only for capacitated problems.

- 44 -

3.4 Branching Rule

This rule provides the choice of the xij variables on which to

branch. If the partial solution at a given node £ is not fathomed, we

branch further by fixing a free x variable at i and moving to the
ij

left branch node.

According to the branching rule the choice of the branching

variable depends on the cij. values and is such that the corresponding

x.. , if perturbed, has the maximum impact on the optimal value of

problem (PR£) .

For a given j , define ci o , the minimum permissible c i-£

and c , the second smallest permissible cij £ , i.e.,

C min c i j k for jeW and (i,j)ES (48)

and c = min c ij for JeW and (i,j)eS (49)

2j i
i+1

For each jEW , define D j = ci2 j - c i1 .. (50)

Our branching rule states that a free x.. varia-)le corresponding toii

c iJZ such that Dj, is maximized over all j , i selected as the

next branching variable and assigned a value of 1.

3.5 Bounding Rule

This rule is designed to "exclude" certain non-optimal assignments.

These assignments cannot lead to an optimal soluticn as we branch from

one node to the next left branch node.

The bounding rule states that a free x variable should be

excluded (by assigning it the value 0) for which

-45) -

(.. - c) (BUBS - LOWB) for jclW and (i,j)cS (51)
L j ",

where c. , BUBS, and LOWB are given by expressions (48), (45),
ilJ,

and (40), respectively.

Thus, by looking ahead, we exclude those as.oiguments which will

provide lower bounds higher than BUBS.

The bounding rule is applied to each jeW just prior to selecting

the x variable for branching to the left.
ij

As in the case of the capacity rule, if the bounding rule results

in excluding (fixing at 0) all but one of the free x variables for

a given JeW , then that particular x.. variable is fixed at 1 . Also

the partial solution is updated accordingly to reflect the x.. variables

fixed at 0 or I due to the application of the bounding rule.

3.6 Backtracking Rules

If a partial solution at a given node has beer. fathomed, we back-

track. The backtracking rules are typical of a branch-and-bound procedure.

In addition, the application of the capacity rule and the bounding rule

can lead to backtracking. The criteria for backtracking include the

f'o lowing.

(a) When applying the capacity rule, if the available
capacity given by the right-hand side of inequality

(47) is negative, i.e., (qk - E djk) < 0

then backtrack. -

(b) If LOWB - BUBS, then backtrack. Otherwise compute
UFB if the solution is feasible in problem (P).
Then update BUB and BUBS if UPB < BUB, and back-
track if LOWB = BUBS.

(c) If furt her branching is not possib]e, then backtrack.
This can happen due to the capacity rule, the bounding;
rule, or the branching rule if the updalted partial
solution is such that no further branching is possible,
i.e., x., variables are fixed at 1 for all j , or

IJ
equivaLentLy, W=

f 'I

-46 -

Whea ony of the backtracking criteria apply, we backtrack to

the parent node and move to the right branch node (if the right branch

has not already been explored) by fixing the appropriate xij variable

at 0 . If the right branch has already been explored, we continue back-

tracking to a parent node where we can move to a right branch node.

The branch-and-bound procedure terminates when we bar.ktrack to the

root node and find that the right branch node has already been explored.

I

4. COMPUTATIONAL STEPS AND THE COMPUTER PROGRAM

A computer program called ZIPCAF (an acronym for Zero-one Integer

Program for multiactivity multifacility Capacity- onstrained Assignment

Problems) implementing the branch-and-bound methodology has been developed.

Detailed procedural steps and guidelines to use the computer

program are described in a separate document [Chhabra and Soland (1980)]

titled "Program Description and User's Guide for 2.IPCAP--a Zero-one

ILteger Program to solve mltiactivity multifacility Capacity-const:-ained

Assignment Problems." Specifically, the document includes:

Problem formulation (') and potential areas of

applicatLion

Overall flow diagramr and detailed proced'iral steps
for the comFuter program

Program listing and dictionary of te symbolic names.

The listing includes extensive use of comment cards
to explain various computational steps.

User information including

- schematic diagram of the deck structure,

- detailed instructions for the job control (JCL)
cards, program parameter card, program options
card, and the various other input data cards.

Three test problcms to demonstrate the use of the

program. The display includes coded input and

annotated outputs reflecting the use of selected

program options.

As mentioned ear iecr, ZIPCAP is primarily designed for caI-acitated

problems. However, uncapacitated problems can be solved as a special

case, and this is demonstrited by including an uncapacitated test

problem.

- 47-

48

Because of the extensive coverage of the program description and

user guidelines in the above document, this chapter provides only an over-

view of the computer program, including an overa'.l flow diagram, and a

summary of the program options, in order to provide continuity in this

document. In addition, a step-by-step description oi a test problem is 4

presented to demonstrate the use of the various components of the branch-

and-bound methodology. The computer printout showing step-by-step details

is obtained by use of one of the program options. The use of this option

to display detailed steps in this document, in fact, complements the use

of the various options demonstrated in the other document.

4.1 The Program

Figure 5 presents a simplified flow diagram of the branch-and-

bound procedure. The major computational steps for the computer program

are numbered in circles. These steps are essentially based on the

methodology components described in the previous chapter. A step-by-step

description has been included in the other document [Chhabra and Soland

(1980)].

The computer program ZIPCAP is written in FIRTRAN IV, and has

been developed and tested on an IBM 3031 at the George Washington

University. The program, comprising about 480 lines is currently

dimensioned for a maximum problem size of 35 designs (m, 35 activities

(n) and 30 facilities (p). The program size to execute a problem has

two components: one, due to the program itself, comprising 173 K bytes,

and the other aependent on the dimensions of the arrays given by the

following functional relationship.

f(m,.a,p) = 4[(p+4)mn + (m+5)p+9n] bytes

The computer program listed in the other document has since been

further improved. The basic improvement has been the addition of the

facility usage rule. This rule, as described in Chapter 3, is applied

both to capacitated and uncapacitated problems just before the applica-

tion of the capacity rule. For completeness of this document, a revised

program listing is included in Appendix A. It may te mentioned that

0'

-49 -

Besti Upper
Buound

f\ to NetArlac I Co to Next I(ft Branch) I uaacilitYtac due to.ih rnh

Usage Jn rob le n (PRE); Renht Brnd)

Ca HU. -0 N be
Hade No easbl

L Rulure _5.

Ap pl f lcdlv flwdBackfothra -ndbud rcd r c

-50-

the revised prugram solves the test problems included in the other document

more efficiently -- in less time and in fewer no(es (with an average

reduction in nodes of 31 percent). The improvement in efficiency seems

to result from the "multiplicative" effect of the various rules. Another

improvement made is that the computer printout always displays t|,c node

number (IBNOD) at which the best upper bound changes (improves) and the

corresponding values of the best upper bound (BUB) and the adjusted best

upper bound (BLBS).

ZIPCAP provides numerous options to the pr-.gram user. These options,

described in the other document, are summarized in Table 3.

Option ICAPR, the capacity rule, is automatically skipped by the

program when solving an uncapacitated problem. Option ISTEP, the

intermediate steps' listing, even when skipped, providcs information on

the total number of nodes explored. A summary listing provides necessary

information tL construct the branch-and-bound tree, whereas a detailed

listing of the intermediate steps is useful when changing or debugging

the program.

Option EPS, the optimal/suboptimal solution, provides the

flexibility of obtaining a suboptimal value guaranteed to be within

a specified fraction of the optimal value. The resulting solution may

be suboptimal but could provide a considerable saving ii terms of

exploring fewer nodes in comparison to those necessary for obtaining

an optimal scluton.

Option ET, by providing important information at a specified

elapsed time, is useful in a situation where the total time allocated

to solve a problem may not be sufficient and the program terminates

before verifying an optimal solution. The information provided by

this option includes an updated partial solution showing the x .

variables fixed at 0 or I, at the current node being explored at

the specified tire ET. By looking at the first few variables displayed

in the partial sclution of the current node, it is possible to assess

the extent of the branch-and-bound tree explored until time ET. For

-51-

0 W 0

wo a~ 0 r.
) . 4-4 4

0. 0) 0)

co a). 0. 41 _((0(A c

H.~- 01 U)"C14 "
"0~~ ~ ~ ~ 4-) . L oj>wQ)r

4.4$ 4. C 0 0 0.J 0
0a (U co co 00 I- .c 0 "0

0) 4-4 4-) .0 1 r. 9:) (V.4
co 41 C) r. I 0 U*-4 . (D

4H1- $-H - 00 '

0 J 4- 4u) 4. o 0 z m0I 0"
CU 4- 0 § 4 - CL CUC --4 0 r. (v -

> -'a. 04 1 q c - 0" 4. m 0
14 1 0 >1 4 wH =-m4au.J 0 0 r-~ 06

430 -.4 0 0 -w 41 CL r.U E4- - C 0
co .,q r. 0 4 4) 0 a :- 5 0 ai(->4 C: -XO 0

C: u. 4.) 41 * U wU 4. c 04 - C 0 w m

(V r. x. 4 G0 Q) cl Ua w ~ 0
1-) J U4 4.) 1.0 "a4 cc -0 4 A. 0
-1 u '14 U- U) W- CU 4 (A U) -V,~ 4).J 0 0 O U U

- 1 m.- >U >H >) > - 0 a-4r- 4 0 .0 0 0.

U) -H wH 0 0 -1 0 1 .0 HU 0)-- CC = C :44 "
(n 4-d W04. 0. CA> :3 w --4 ld> 0 0

zi En- tn A4 ,L4 M En 4n 0 0 0. 4)-.-! A
0
0-4

Ca.

040

CU -vaIU0
0. ra. 4-io
a) co

-H1 4-J

U00
4.J CUs a)4 U)

0. 0Cm
-H 5 co 4) EE a

:1 co4 0 0 C
0. 0 () -L 0 -404c

0.

CU- 04

0-4 w w

- 52 -

example, in view of the terminology in Figure 4b Chapter 3), if, at an

arbitrary node, the first term of the partial solution is positive,

i.e., the xi, variable has value 1, then we are still in the left

half of the total branch-and-bound tree. If the first term is negative,

i.e., the xij variable has value 0, then we ar, in the right half of

the total branch-and-bound tree and have explored half of the total

(theoretical) solutions corresponding to the left half of the tree.

If the first two terms are negative, i.e., the fi-st two xij

variables have value 0, then one quarter of the total (theoretical)

solutions remain to be explored, since we are in the next right half of

the right half of the total branch-and-bound tree, .s illustrated in

Figure 6.

Xi 1ij =0 ~

xi.=i/ xi.=O

13 I3ii

xi,=

I - Each ,egment represents 1/4

of the total (theoretical)
solu t ions

Each segment represents 1/2
:,eft half of Right half of of total (theoretical)
the "total" the "total" solutions
branch-and- branch-and-
bound tree bound tree

Figure 6

Illustration for estimating the extent of the branch-
and-bound tree explored

53

Recall froui' Chapter 3, that a total of (2 m-l) n node- are theoretically

possible. Thus, if the first g [g < (m-l)n] terms at an arbitrary

node are negative, then theoretically about [(2n-l) n/ 2 g] nodes remain

to be explored.

4.2 An Illustrative Example

We consider a capacitated test problem with five designs (m),

four activities (n), and eight facilities (p) to demonstrate the use

of the branch-and-bound procedure and the compute- program.

The computer printout for this problem sho-ing step-by-step

details for a couple of nodes is presented in Appendix B.

As shown in the beginning of the printout, the options selected

are:

IINPT = 1, i.e., list the input data

ICAPR = 1, i.e., use the capacity rule

ISTEP = 2, i.e., list detailed intermediate steps

IUNCAP = I, since this is a capacitated problem

EPS = 0.0 implying that an optimal solution is desired

ET = 0.0 since a detailed listing of intermediate steps
will be available.

Following the listing of the options, input data listed for the problem

include variable costs ai , fixed costs bk , available capacities
s k k

Sk'and cap;,cities required d ik'The e i values are generated

by the computer program.

The computer program follows the procedural steps marked in the

flow diagram presented in Figure 5. These steps, ilong with the

relevant terminology used in the computer printout, are described below

for a couple of nodes, followed by a complete branch-ana-bound tree for

this problem. As mentioned earlier, a dictionary of the symbolic names

used in the computer program is included in the other document.

-5

Node I

Step I: Initialize.

Initialize BUB = 9999999.0, and since EPS 0.0, BUBS BUB.

Also S = and W = In the computer p intout, vector

FIX(J) reprcL.ents the se, W, and matrix CX(I,J) :epresents both, fixed

and free x.. variables. In the CX(I,J) matrix, an x., variable fixed
ij 1J

at 1 or 0 is represented as I or 2, respectively, and a free x.. variable

is represented by the value 0. Initially, all the x.. variables are free

as shown by narrix CX(I,J) in the printout.

Step 2: Apply the facility usage rule and tl,e capacity rule for

k=1,2,...,8

In the printout, HIND(J) represents d jk defined by expression (46),

and MINSD represents E d jk " As shown in the printoit, MINSD is 0 for

k=l,2, .. ,8 , and so the facility usage rule does not force any facilities

into usage; and as shown by matrix CX(I,J) for k=1,2 8 , the capacity

rule does not fax any x.. variables.

Step 3: Solve the relaxed problem (PR

In the printout FLB(K) represents 6 , given by expression (34),

for computing FC, , and C(I,J) represents c ij defined by expression

(3d). Being at the root node, 9. = 1. Further the solution of problem

(PR) , i.e., X = {x ij is shown in the printout by SOLX(J) which

for (PR1) is X { =41 = 42 = x2 3 = x4 4 = }

Step 4: Compute the lower bound.

The expressions (40) and (41). i.e.,

LOWB = Z('R) (40)

c + Y min c., + FCk (41)
j clW (j i -

(i, j) ES

.
- 55 -

are represented in the printout as

LOWB - MINSC + FC

= 729839.3125 + 0 = 729839.3125

Step 5: Compare IOWB with BUBS.

Since LOWB < BUBS, go to Step 6

Step 6: Check if solution X is feasible in problem (P), i.e.,

expression (42) is satisfied.

Sdijk x < Vk (42)i jij-Sk

X..EX ij j-k
1J

In the printout, NSUMD represents the left-hand side of this inequality,

and for each k , the capacity constraints are satisfied.

Step 7: Compute the upper bound.

UPB is given by expression (44), i.e.,

UPB = X E aij xij + E bkyk (44)
ij k

x..cX

In the printout, the corresponding expression is represented as

UPB = NSUMA + FCUB

= 678,502 + 101,000 = 779502.0

Step 8: Compare UPB with BUB.

Since UPB < BUB, go to Step 9.

Step 9: Set BUB = 779502.0 . Since EPS = 0.0, BUBS = BUB.

Since LOWB < BUBS, go to Step 10.

Step 10: Left branching is possible since W = as shoim by

vector FIX(J); go to Step 11.

Step 11: Apply the bounding rule and the branching rule.

According to our bounding rule, a free xii variable is excluded

- 56-

(fixed at 0) for which

(c ij - Cil J) > (BUBS - LOWB) for jW ani (i,j)ES (51)

For x1 3 , (210,381.4375-145,201.5) > (779,502.0-729,839.3125).

This also holds for x and x , i.e., the bounding rule results

in fixing x13 , x33 , and x14 at 0. This is shown in the printout

by matrix CX(I,J) where the corresponding variables have been assigned

the value 2 because of the bounding rule.

The branching rule directs us to select a free x.. variable

corresponding to c for which D = - c is maximized
i 1 2 c 2 c j.

over all j In the printout, c , ClJci , and D are represented

by NMINC(J), MINC(J) and DIFBR(J), respectively. Since D21 is the maxi-

mum, x4 2 is selected as the next left branching variable. This is shown

in the printout by BRI and is represented as (100 i -t .) e.g., 402

Using the terminology employed in Figures 4a anc 4b, the xij

variables fixed at 0 or 1 in the partial solution S1 will be shown

as S, = {- 103, - 303, - 104, 402} . In the computer printout, vector

STX displays the x.. variables fixed at 0 or 1. The representation'3

of the variables is, however, somewhat different. An x.. variable'3

fixed at 0, due to any rule, is shown as- (100 i + j) - 1,000,000,

e.g., x1 3 is shown as - 1,000,103; an xij variable iixed at 1 due

to the branching rule is represented as (100 i + j), e.g., x4 2 as 402;

and an x.. variable fixed at I due to a rule other than the branching
13]

rule is shown as (l00 i + j)+ 1,000,000, e.g., x2 2 is represented as

1,000,203.

In the printout, vector STX represents updated partial solution

Si.

7 -

We now move to Node 2.

Nodc 2

The updated matrix CX(I,J) and vector FIX(J) aze displayed in the

printout.

Step 2: Apply the facility usage rule and the capacity rule for

k=l,2, . . ,8

As shown in the printout, MINSD (representing djk) , being

positive for 1=1,2,3,4, and 5 , these facilities are forced into

usage. Further, for k=4 , expression (47) holds for x34 and x54

i.e.,

(180-0) > (200-30), and

(180-0) > (200-30), respectively.

As shown by matrix CX(I,J) in the printout, these two variables are

excluded (fixed at 0) by the capacity rule. Since the capacity rule

results in fixing at least one variable in the first cycle, another

cycle is repeated as displayed in the printout. The second cycle

does not fix any more variables. Vector STX is uplated accordingly.

Step 3: Solve the relaxed problem (PR2)

6k2 represented by FLB(K) , cij 2 represented by matrix C(I,J),

and solution Y represented by SOLX(J) are displayed in the printout.

Step 4: Compute LOWB.

LOWB, from the printout, is equal to 749011 4375.

Step 5: Compare LOWB with BUBS.

Since LOWB < BUBS, go to Step 6.

Step 6: Check if solution X is feasible in (P).

In the printout, for k=4 , NSTJD = 290 > 200 , i.e., expression

(42) is not satisfied, and we go to Step 10.

Step 10: As shown by vector FIX(J), left bran:hing is possible

and we go to Step 11.

58-

Step 11: Apply the bounding rule and the branching rule.

As displayed by matrix CX(I,J) in the printout, the bounding

rule results in fixing x2 1 and x24 at 0. Now, for j-4 , except

for x4 4 , all the xij variables are fixed at 0; therefore x 44 ,

is fixed at 1. This is reflected by matrix CX(I.J), and vector FIX(J).

Vector STX is updated accordingly.

The branching rule selects x4 1 as the next branching variable.

This is shown in the printout by BRl, and vector STX is updated

accordingly.

We now n.ive to Node 3.

Node 3:

The updated matrix CX(I,J) and vector FIX(J) are displayed in the

printout.

Step 2: Apply the facility usage rule and the capacity rule for

k=1,2,....,8 .

The faLi~ity usage rule forces facilities 1 to 5, and 8 into

usage. For k=4 , the capacity rule excludes x43 and x5 3 , i.e.,

fixes them at 0; and for j=3 , all but x2 3 beig fixed at 0, x23

is fixed at 1. This is displayed in the printout by matrix CX(I,J)

and vector FIX(J). Vector STX is updated accordingly.

Although the capacity rule has fixed at least one xij variable

during the initial cycle, another cycle is not necessary, as displayed

by vector FIX(J) which represents set W, since we have an x variable
ii

fixed at I for each of the n columns (activities).

Step 3: Solve the relaxed problem (PR3)

SOLX(J) displays the solution for the relaxed problem.

Step 4: Compute LOWB.

LOWB, shown in the printout, is equal to 779502.0

*II

- 59 -

Step 5: Compare LOWB with BUBS.

Since LOWB = BUBS, go to Step 12.

Step 12: Backtrack.

We backtrack by moving to the parent Node 2, and branching to the

right by setting x41 = 0 (since the right branch has not yet been explored).

In the printout, this is accomplished by observing the last entry in vector

STX, and moving backwards, one entry at a time, until we find a positive

entry without 1,000,000 added to it. The corresponding x.. variableij

is fixed at 0, and we move to the right branch node. Matrix CX(I,J), vector

FIX(J) and vector STX are updated accordingly. As dis1layed in the print-

out, entry 401 in vector STX is such an entry, and variable x4 1 is fixed

at 0 for branching to the right. This is shown in the printout by BRO as 401.

The updated vector STX is also displayed.

W4e now move to Node 4.

Node 4

The updated matrix CX(I,J) and vector FIX(J) are displayed in the

printout.

Step 2: Apply the facility usage rule and the capacity rule for

k=i,2,.

As displayed in the printout, for k=4, MINSD=230 > 200 , i.e.,

the right-hand side of inequality (47), (sk - Z djk) < 0 , andk

according to our backtracking rules, we backtrack, i.e., go to Step 12.

Step 12: Backtrack.

We backtrack to the parent Node 2, and since the right-hand branch

has already beer explored, backtrack to Node I and to the right-hand

branch by fixing x4 2 to 0 . This is shown in the printout by BRO as 402,

and vector STX is updated accordingly.

We now move to the next node, i.e., Node 5.

- 60 -

Branch-and-Bound Tree

We continue the branch-and-bound procedure from one node to

another until we backtrack to the root node and find -hat the right

branch has already been explored. The procedure, then, terminates and

the solution corresponding to the best upper bound is the optimal solu-

tion.

For this problem, a total of nine nodes are explored and the

optimal value equals 779502.0. The optimal solution is x41
= x4 2=

x2 3 = x4 4 = 1 and y = Y2 = Y3 = Y4 = Y5 = Y8 :_ 1 . This is

displayed in the computer printout on the last page of Appendix B.

Figure 7a presents the branch-and-bound tree f(.r this problem,

and shows the node numbers, the bounds, and the branching variables.

In ordel to demonstrate the role of the cEpacity rule and the

bounding rule, Figure 7b displays the x.. variatles fixed as 0 or 1:Lj

by these rules for this test problem.

The cumulative effect of the various rules, including the facility

usage rule, the capacity rule, and the bounding rule, ;Aakes the branch-

and-bound procedure quite efficient. Further, the sto'age and updating

of the x.. variables fixed at 0 or 1 is done in a manner that makes
ij

utmost use of tie relevant information at the preceding node.

(LOWB = 729839.3

UPB = 779502.0 = BUB

S749011.4 2 = 747995.3

3=0x4=i 0 x233

LOWB = 779502.0 3 4 6 LOWB = 771864.9 9 LOWB = 793044.0
UPB = 857825.0

x24 =24 ,,

LOWB = 807947.0 7

Figure 7a

Branch-and-bound tree for a test problem
(Test Problem with m=5, n=4, and p= 8)

Node Capacity Rule Bounding Rule

1 x13=0 , x33=0 , x1 4 =0

2 x34=0 , x54 =0 x 2 1 =0 , x24 =0 , x44--

3 x4 3 =0 , x5 3 =0 , 23 = 1

5 x4 3 =0 , x 3 4
= 0

6 x l0 , x2 1
= 0 , x 3 1

=0 , 22 = 0 , 054= 0

8 x44=1

9 x-5 3 =1, X44=
0 , x 54 = 0, x 24

Figure 7b

VirlanDes t ixed by the capacity rule and the bounding rule

5. COMPUTATIONAL TEST RESULTS

The computer program ZIPCAP has been testEd on several problems.

Although primarily designed for capacitated problemn (i.e., where the

capacity constraints are active), the program can also be used for solving

uncapacitated problems as a special case. Since the dita available for

capacitated problems were limited, some uncapacitat:d problems were also

considered fo: testing the program. (Most of the data were furnished by

Professor Pinkur and are related to his work on multi-echelon inventory

systems.)

Table 4 presents the test results of ZIPCAP. In order to verify

the optimal solutions, the test problems were also solved by using the

0-1 integer programming code RIP30C [Geoffrion and Nelson (1968)].

In the table, the problem size shows the number of designs (m),

activities (n). and facilities (p). This is equivalent to solving a

problem having mn+p variables and n+p constraints. The elapsed time

represents the time in seconds to solve the probleq, excluding the time

to read and write the input and to write the outpu.. The total number

of nodes explored by ZIPCAP for a specified set of options is also shown.

Both RIP30C and ZIPCAP were run on an IBM 3031 at The George

Washington University. The last problem in the table was not run using

RIP30C because of the code's capacity limitation to 90 variables and

50 constrairpts.

The test problem with m=3 , n=4 , and p=5 has three variations,

using different values for the facility capacities. The data for the

variable costs aij , fixed cost bk , and the capacity requirements

dij k are given in the other document, i.e., Chhabra and Soland (1980).

For the test problem with m-5 , n=4 , and p=8 - runs 4a, 4b,

and 4c are the same except for ne different intermediate steps' option

- 62 -

IJ

- 63-

s,- Orl 00 C Cn -7t ONf~r

-i~~~~- cc c q 1 " a

C~~1 ,-; c' - N . c'

0. 0n 0L 4 I (

c *1

s 0 DC 0 0 000C)0 0 c C)

00

5 S1 1c 55 5555 0

'T 00
E rV3fl 0 0o 0 0 0 .-1i

C_ 4
;_ " . (IlL &. o 'i -j

CC

U> C))

CM 4-) 0 0- ' ~
C.~~ 0~4 -0 ' 4 I

IL~~C- 0 ~00 - '

CCc

j mo

c CD m

j; (IC~ ta N0

13 0' 1! 01 0 1

- 0GO c_ 0

0.I I I 0
r) -03 - (co

0N

~ ;i U ~ -4 0

- 64 -

(ISTEP) and this results in slight differences in the time taken to solve

the problem. Runs 4a and 4d differ in that 4d does nt use the capacity

rule; the resulting difference in the total number of nodes explored

to reach the optimal value points to the effectiveness of the capacity

rule in conjunction with the bounding rule.

Run 5 shows the results for an uncapacitared problem with

mlO , n=8 , and p=8 . Option ICAPR is not usid since the capacity

rule is not useful for an uncapacitated problem.

Another uncapacitated problem with m=lO , n-30 , and p=8 is

solved in runs 6a and 6b. In run 6a, the epsilon value (EPS) is

specified as 0.002. The solution value found by exploring 125 nodes

may be suboptimal but is guaranteed to be within +0.2 percent of the

optimal solution value. Run 6b is made with an epsilon value (EPS)

of 0.0, and the optimal solution value is found in 277 nodes. A comparison

of runs 6a and 6b shows that the number of nodes -.s less than half for a

solution value that may be suboptimal but very close to the optimal solu-

tion value as compared to the number of nodes for an oritimal solution

value.

In general, a small difference between a solution value that may

be suboptimal and the optimal solution value, translates into a

significant difference in the corresponding number of nodes and the

solution time required.

6. FURTHER CONSIDERATIONS

it was mentioned in Chapter 2 that it is possible to consider

alternative formulations of problem (P), and also to crnsider choices of
Lagrange multipliers other than v k = bk with the purnose of obtaining

"tighter" bounds which, in turn, would further improve the efficiency

of the branch-and-bound procedure. These aspects will be discussed in

this Chapter.

6.1 Alternative Formulations

Problem (P) can be reformulated by adding add.tional constraints

such that the corresponding Lagrangian relaxation(s), if solved, would

provide "tighter" bounds. If such a relaxation does not possess the

integrality property, then it provides an equal or better bound compared

to that from an LP relaxation, as mentioned in Chapter 2.

Two alteinative formulations of problem (P), along with their

Lagrangian relaxations, are given below.

6.1.1 Alternative Formulation 1

Formulation (APl) is obtained by adding the constraints

elk X i Yk ' for all i,j, and k , to problem (P), i.e.,

Minimize a. x + Z bky (4)
ij ij ij k k

subject to Z x.. = 1 vi (2)

(API) i. Y r x. < Vk (5')
S ijk ij -

ek xi <k Vi,.j,k (52)

xij Yk 0 or I V,j,k (6)

- 65 -

- 66 -

Since elk = 1 or 0, each constraint of (52) is efther equivalent to

Xj - k (if elk-- 1) or else is redundant (if elk 0). Problem (API)

thus has, at nust, mnp additional constraints relative to problem (P).

Two Lagrangian relaxations are now considered for problem (API).

The first Lagrangian relaxation is obtained with respect to

constraints (5') by introducing nonnegative Lagrange multipliers

v k > 0 to get

Minimize alj x. + E bkyk - EZ vk (Yk - rij k xij)
i j k k j

subject to (2), (52), and (6), or equ'valently,

Minimize E .X (atj + E Vk rijk)- Yk (V - bk) (53)

subject to x i yj (2)

(ALRlV)

ek xi < Y Vi,j,k (52)

xijk Yk= 0 or 1 Vi,j,k (6)

Another Lagrangian relaxation of problem (API) is obtained with

respect to constraints (5') and (52) by introducing noniegative Lagrange

multipliers v k and Xijk ' respectively, to get

Minimize E E aij xi. + E bkyk
U 'j k

- Vk (Yk- rijk x)ij
k ij

E A ijk (Yk - elk x)ij
isj k

subject to (2) and (6), or equivalently,

-67-

Minimize x (a.. + E v r + e , ik)

j ij ij kk ijk k k j

-(Y k (vk + Z Aijk - bk) (54)
(ALR~v) k ij

Subject to E x.. 1 vJ (2)
iJ

xij ' Yk = 0 or 1 Vi,j, (6)

For this problem, the solution is:

yk =0 if (v k + X ijk - bk) < 0 ,

=1 if\ (v k + X Z A ijk - bk > 0 ,
i j

and x =1 if i minimizes (a. + E v k r -j + e k X- k)

over k

We need good choices of Lagrange multipliers vk with which to

solve problem (ALR1v), and of Lagrange multipliers vk and Xijk with

which to solve problem (ALRl v,). Problem (ALRl v) d-es not possess the

integrality property, thus offering the hope of a tign-t bound, but has

more constraints and is difficult to solve compared to problem (ALRI vX)

which, on the other hand, involves more Lagrange multip'liers.

6.1.2 Alternative Formulation 2

Another formulation of problem (P) is similar to problem (API)

except for a modification in constraints (5'), i.e.,

-68-"

Minimize aij xii + I b k y k (4)

i j k

Subject to Z x.. = 1 Yj (2)

(A2 r jkx i< 1 Vk (55)

(P)i k i £j-

eiA xij Yk Vi,j,kik k (52)

xij , Yk = 0 or 1 Vi,j,k (6)

A Lagrangian relaxation with respect to constrain,.s (55) and (52) is

obtained by introducing nonnegative Lagrange multipliers vk and Xijk

to get

Minimize E Z aij x. + Zby
i j i k k

E v k i r k ijk xijk ij

E E E A ijk yk - e ik x ij)

Subject to (2) and (6), or equivalently,

Minimize " (ai +kv r e i k Aijk)

+ k (bk - Z Xiik) -
7 vk (56)

(ALR2) ii)
VA Subject to Ex. 1 ij (2)

i13

(6)
x.. , y 0 or 1 Vi, ,k
i k

For this problem, the solution is:

Yk = 0 if E Z Xijk < bk 9ij

-1 if F k > bk '
u ijk

-69- .

and x =1 if i minimizes(ae _ ._ + vee

\iJ kijk + Zk jk/
ki

Here again, we need good choices of the Lagraage multipliers vk

and Aiik with which to solve problem (ALR2 v,).

6.1.3 Choice of Lagrange Multipliers

Each of the relaxations (ALR,) and (ALR2,) involves p vk

Lagrange multipliers and mnp Aijk multipliers. If we have good choices

of these multipliers, the resulting solutions of the relaxed problems

should provide "tighter" bounds (because of the additional constraints)

than the bound from relaxation (LR v). Since relaxa~ions (ALRlv,A) and

(ALR2v,X) are similar to a great extent, only the relaxation (ALRIvX)

will be considered for further discussion.

By looking at expression (54) of the formulation (ALRI v,), a

meaningful choice of the Lagrange multipliers vk and %ijk appears

to follow from setcing

vk + Z Z Aijk = bk Vk (57)
ij

so that each of the Xijk can be chosen as

k k if e
ijk nE eik (58)

= 0 otherwise

The solution for problem (ALRlv,) is then to select, from each column J

an x~j variable which minimizes (aj+YV r. + E t. ove ,
k j k -- k

Arbitrary values were considered for the vk (e.g., vk equal to

3/4 bk ,1/2 bk 1/4 bk and 0) the X iJk were then computed from

- 7C -

(58), and the test problem with three designs (m), four activities (n)

and five facilities (p) was solved. Three cases with different capacities

sk (as specified in Chapter 5, Table 4) were tried for the solutions at

the initial node. The results, however, were not conclusive in terms of

providing a meaningful choice of the Lagrange multir.liers v k (and of

the X ijk)

Since the relaxation (ALR V,) possesses the integrality property,

a choice of the multipliers as the optimal values of the dual variables

of the corresponding linear programming problem woulo provide a solution

as good as the LP solution (as stated in Chapter 2). .c do not propose to

solve linear programs as a part of our branch-and-bound methodology.

However, we have made some LP runs, basically to see if the results provide

insight leading co the choice of the Lagrange multipliers, and also to

see if the resulting LP solutions are "close" to th integer solutions.

These results are given below.

The LP formulation (API) corresponding to problem (API) is:

Minimize X a. xij + Z bky (4)
i j k

Subject to x. 1 VJ (2)

(API) ijk Xij < Yk (5')

*~ XJ < Vij,k (52)eik xij Yk ljk(2

Yk 1 Vk (15)

*i , -k > 0 Vi,j,k (16)

The constraints x.. < I are implicit in constraints (2).

Problem (API) was solved for the test problem w'ch m=3, n=4, and

p=5 and three different cases for the capacities sk (as specified in

- 71 -

Chapter 5, Table 4). Each case was solved using the IMSL (International

Mathematical and Statistical Library) Code ZX3LP on an IBM 3031 at The

George Washington University.

Note that the formulation (APl) has up to mnp mure constraints than

the LP formulation (P) given in Chapter 2. For our test problem, this

translates into solving a problem of 17 variables and 50 constraints

corresponding to formulation (API) as against 17 variables and 14 con-

straints corresponding to formulation (P).

Table 5 lists the solution values for each of the three cases with

different capacities for the small problem with three designs, four activi-

ties and five facilities. The solutions to problem! (P) and (AP1),

obtained from ZX3LP, show the optimal solution valucs, the optimal values

of the variables xij and Yk , and the optimal values of the dual

variables corresponding to the Lagrangian relaxations (LR V) and (ALR1 vX),

i.e., vk associated with the capacity constraints (') and Xijk

associated with the constraints (52). The table also shows Z(P), and

the Lagrangian solution value Z(LR v) obtained by setting vk = bk for

all k at the root node, i.e., Z(LR b).

As expected, the LP solutions for each of the three cases show

Z(AP) to be considerably higher than Z(P), and closer t.. Z(P), thereby

providing a tighter bound. As for the Lagrange multipliets vk and

Xijk ' the following relationships are observed.

E X ijk < bk Vk ,and

Vk +X X ijk bk 'k

ij

Also, for vk = 0, E E Xj = bk , andij

for vk > bk X X Xijk = 0 Vk

ij

-72

0 K I '

0 0

?N x

I- I- 0

4 If.

440 a

14

0 6 N 0

- 73 -

Although the relationship among various Xijk values is not apparent,

the above observations are useful in further exploring some good choices

of the Lagrange multipliers for the relaxation (ARl Qv,), as discussed

earlier.

As for the "closeness" of the LP solution to that of the integer

solution, most of the solution values xij and yk of problem (A-)

are fractional, and their rounding off to 0 or 1 does not, in general,

seem to correspond to the optimal integer solution values x ij and

Yk of problem (P).

Table 5 aiso displays Z(LRb) at the root node for each of the

three cases. For sk = 3000 , Z(LRb) = Z(P) , and the Lagrange multi-

pliers, as reflected by the values of the dual variables of problem (P),
are equal to bk for all k . This is expected from Theorem 3 and our

discussion of the integrality property in Chapter 2. Further, the dual

variables of (P) for the first two cases (i.e., sk = 7COVk , and

sk = 400,...) have values vk > bk from Theorem 1.

The Z(LRb) values in Table 5, however, take no consideration of

the capacity rule and/or the facility usage rule of our branch-and-

bound procedure. These rules, by fixing certain x.. values to 0
ii

or 1, and by forcing certain facilities into the solution, provide

an improved lower bound. As per our branch-and-bound procedure the

improved lower bound at the root node is obtained by solving problem

(PR For example, for sk = 700 Vk, the values of Z(LR b) and Z(PR I)

are shown in Figure 8. The figure also shows the values of Z(P), j
Z(APl), and Z(P). The branch-and-bound procedure rules provide an

improved value of the lower bound Z(PR) compared to Z(P). It appears

that some good values of the Lagrange multipliers of the relaxation [
(ALRI v,), if found, could, in conjunction with these rules, provide

significant improvement over Z(API), and without the need to solve an

LP problem.

'I,

-74-

Z(-)

37,774 z (P)

37,678 Z(API)

37,164

36,688- - ----------- Z(P)

36,505 ZLRb) [infeasible in problem (P)]

Figure 8

Lagrangian and other solution values for a test problem
(Test problem with m=3, n=4, p=5 , and sk 700 Yk)

- 75 -

6.2 Subgradient Method

It was mentioned in Chapter 2 that setting the Lagrange multipliers

vk equal to b k for all k provides a good starting point in solving

the Lagrangian relaxation (LR) of problem (P). From Theorem 3, this

v

choice is optima] (in terms of providing the tighte3t lower bound) if

the resulting solution is feasible in problem (P). In other cases,

i.e., where the resulting solution is not feasible in problem (P), this

choice is generally not optimal and it is possible to tighten the bounds

by considering values of vk > bk (from Theorem 1). Or.e method that

seems useful in providing such a choice is the subgradient method.

The subgradient method is an adaptation of the gradient method

in which gradients are replaced by subgradients. Through a heuristic

choice of the step-size, this method has been successfully used to

provide improved bounds and sometimes optimal solutions [for details

see Held, Wolfe, and Crowder (1974), Fisher (1978), and Christofides

(1980)]. The fundamental theoretical result is that

g
Z(LR g) .Z(D) if tg--P0 and tq--b as g-e.

q=0

where tg is the positive step-size t for the gth iteration,

and Z(LR g) is the solution value of the relaxed problem (LR) using
v v

vk values obtained at the gth iteration.

In the case of problem (P), the step-size tg+ 1)or iteration

g + 1, given that we have a solution of (LRV), is given by

g+l = Xg+l[z*- Z(LR vg)] (59)

t lYk g - rij k xijg11 2

k ij

where Xg+l is a scalar and generally between 0 and 2, and

Z is an upper bound on Z(LRg), frequently obtained by applying

a heuristic to solve problem (P).

I - 76 -

Given the vector of multipliers v , v g + is generated by

Vk k = - t yk r ij k A jg) (60)
i j)

where we enforce vkg+l > b k in our case of problem (P) (because of

Theorem 1).

Justification for these rules and conputational results of

applications of the subgradient method are given in Hild et al (1974).

The scalar A is generally initiated by setting X1 = 2 and halving

subsequent A's whenever the resulting solution value has failed to

increase in soine fixed number of iterations. This rule has performed

well empirically [Held et al (1974) and Fisher (1978)].

For the test problem with three designs, four activities, five

facilities, and the capacities sl = 400, s2 = 400, 3 = 1000,

s 4 = 400, s5 400, the Lagrangian solution obtained it the root node

by setting = bk for all k , i.e., the solution to problem (PR1)

is infeasible iT problem (P), i.e., it violates the capacity constraints.

It seems that the subgradient method could be usetul in considering

v > b with the ultimate purpose of obtaining a tighter lower bound,
k- k

and, depending on the revised solution(s), possible Jmprovement in the

best upper bound. Another possiblity could be to first arbitrarily

increase the relevant vk values by a small percentage of the bk

values and then solve problem (LR), hopefully to improve the lower

bound; and thereafter to use the subgradient method for obtaining

subsequent values of v k 9 and tightening the bounds.

Both of the areas discussed above, i.e., the consideration of

a)lternative formulations of problem (1), and the application of the

subgradient method, and their combination, seem us(-ful for continued

research in term:- of further improving the branch-anl-hound procedure

for !;olving rhi multiactivity multifacility capacity-constrained 0-1

assignmeL problems.

REFERENCES

BALAS, E. and N. CHRISTOFIDES (1976). Talk presented at the Ninth

International Symposium of Mathematical Prograiuming, Budapest.

BAZARAA, M. S. and J. J. GOODE (1977). The traveling salesman

problem: A duality approach. Mathematical Programming

13 221-237.

BURDET, C. A. and E. L. JOHNSON (1975). A subadditive approach to

solve linear integer programs. Presented at workshop on integer

programming, Bonn.

CHALMET, L. G. and L. F. GELDERS (1976). Lagrangian relaxations for

a generalized assignment-type problem. Katholieke Universiteit

Leuven Working Paper, No. 76-12.

CHHABRA, K. L. and R. M. SOLAND (1980). Program description and user's

guide for ZIPCAP -- a zero-one integer program to solve multi-

activity multifacility capacity-constrained as-;ignment problems.

Technical Paper Serial T-423, Program in LogisticQ, The George

Washington University.

CHRISTOFIDES, N. (1980). Lagrangian relaxation. Talk presented on

February 27, 1980 at the National Bureau of Standards, Maryland.

CORNUEJOLS, G., M. L. FISHER, and G. L. NEMHAUSER (1977). Location

of bank accounts to optimize float: An analytical study of

- 77 -

-78 -

exact and approximate algorithms. Management Scence 23 789-810.

ETCHEBERRY, J. (1977). The set-covering problem: A new implicit

enumeration algorithm. Operations Research 25 760-772.
IVA

ETCHEBERRY, J., C. CONCA, and E. STACCHETTI (1978). An implicit

enumeration approach for integer programming using subgradient

optimization. Publication No. 78/04/C, Universidad de Chile.

EVERETT, H. (i963). Generalized Lagrange multiplier method for

solving problems of optimum allocation of resources.

Operations Research 11 399-417.

FISHER, M. L. (1973). Optimal solution of scheduling problems using

Lagrange multipliers: Part I. Operations Research 21 1114-1127.

FISHER, M. L. (1976). A dual algorithm for the one-machine scheduling

problem. tathematical Programming 11 229-251.

FISHER, M. L. (1978). Lagrangian relaxation methods for combinatorial

optimization. Decision Sciences Working Paper No. 78-10-06,

University of Pennsylvania.

FISHER, M. L. and D. S. HOCHBAUM (1978). Database location in computer

networks. Decision Sciences Working Paper No. 78-03-06,

University of Pennsylvania.

FISHER, M. L. and L. SCHRAGE (1972). Using Lagrange multipliers to

schedule elective hospital admissions. Working Payer,

University of Chicago.

-79-

FISHER, M. L. and J. F. SHAPIRO (1974). Constructive duality in

integer programming. SIAM Journal on Applied Mathematics

27 31-52.

GAVISH, B. (1978). On obtaining the 'best' mult 'pliers for a

Lagrangian relaxation for integer programming. Computers

and Operations Research 5 55-71.

GEOFFRION, A. M. (1967). Integer programming by implicit enumeration

and Bala's method. SIAM Review 9 178-190.

GEOFFRION, A. M. (1974). Lagrangian relaxation for integer

programming. Mathematical Programming Study 2 81-114.

GEOFFRION, A. M. (1975). A guide to computer-assisted methods for

distribution system planning. Sloan Managemert Review

16 17-24.

GEOFFRION, A. M. and R. E. MARSTEN (1972). Integ~r programming

algorithms: A framework and state-of-the-art survey.

Management Science 18 465-491.

GEOFFRION, A. M. and R. MCBRIDE (1978). Lagrangian relaxation

applied to capacitated facility location probl~ms.

AIIE Transactions 10 40-47.

GEOFFRION, A. M. and A. B. NELSON (1968). User's instrLctions for

0-1 integer linear programming code RIP30C. Memorandum

RM-5627-PR. The Rand Corporation.

-80-

GILMORE, P. C. and R. E. GOMORY (1963). A lintar programming

approach to the cutting-stock problem, Part IT. Operations

Research ii 863-888.

GROSS, D. and C. E. PINKUS (1979). Designing a support system

for repairable items. Computers and Operations Research

6 59-68.

GROSS, D., C. E. PINKUS, and R. M. SOLAND (1979'. Designing a

multi-product multi-echelon inventory system. Te chnical Paper

Serial T-392, Program in Logistics, The George W shington

University.

HELD, M. and R. M. KARP (1970). The traveling salesman problem

and minimum spanning trees. Operations Research 18 1138-1162.

HELD, M. and R. M. KARP (1971). The traveling salesman problem

and minimum spanning trees: Part II. Mathematicil Programming

1 6-25.

HELD, M., P. WOLFE, and H. D. CROWDER (1974). Validation of sub-

gradient optimization. Mathematical Programnui 6 62-88.

HILLIER, F. S. and G, J. LIEBERMAN (1980). Operations Research.

Holden-Day, San Francisco.

KHUMAWALA, B. Y. (1973). An efficient heuristic procedure for the

uncapacitaLed warehouse location problem. Naal Research

Logistics Quarterly 20 109-121.

-81-

KHUMAWALA, B. M. and J. P. STINSON (1980). Unpublished Paper.

KINUTH, D. E. (1968). The Art of Computer Programming. Addison-

Wesley Publishing Company, Reading, Mass.

LORIE, J. and L. I. SAVAGE (1955). Three problems in capital

rationing. Journal of Business 229-239.

MUCKSTADT, J. and S. A. KOENIG (1977). An application of Lagrangian

relaxation to scheduling in power generation systems.

Operations Research 25 387-403.

NEMHAUSER, G. L. and G. WEBER (1978). Optimal set partitioning,

matchings and Lagrangian duality. Talk delivered at the

New York ORSA/TIMS meeting.

PINKUS, C. E. (1971). The design of multi-product multi-echelon

inventory systems using a branch-and-bound algorithm.

Technical Paper Serial T-250, The Institute for Management

Science and Engineering, The George Washington University.

PINKUS, C. E. (1975). Optimal design of multi-product multi-echelon

inventory systems. Decision Sciences 6 492-507.

PINKUS, C. E., D. GROSS, and R. M. SOLAND (1973). Optimal design

of multiactivity multifacility systems by branch-and-bound.

Operations Research 21 270-283.

-82 -

ROSS, G. and R. M. SOLAND (1975). A branch-and-bound algorithm

for the generalized assignment problem. Mathematical

Programming 3 91-103.

ROSS, G. and R. M. SOLAND (1977). Modeling facility location

problems as generalized assignment problems. Management

Science 24 345-357.

ROSS, G. and R. M. SOLAND (1980). A multicriteria approach to

the location of public facilities. European Jou-nal of

Operational Research 4 307-321.

SHAPIRO, J. F. (1977). A survey of Lagrangian techniques for

discrete optimization. Technical Report No. 133, OR

Center, MIT.

APPENDIX A

ZIPCAP LISTING (REVISED)

-83-

- 84 -

FORTRAN IV G LEVEL 21 MAIN DATE = 80315 11/07/24

C ZIPCAP, A ZERO-ONE INTEGER PROGRAM IS DESIGNED 00000010
C TO SOLVE MULTIACTIVITY MUL71FACILITY CAPACITY- 00000015
C CONSTRAINED PROBLEMS HAVING VARIABLE AND FIXED 00000020

C COSTS. IT ALSO SOLVES UNCAIACITATED PROBLEMS AS A 00000030
C SPECIAL CASE 00000040

0001 INTEGER 0(35,3S,30), A(35,35), Cx(35,3!), E(35,30), 00000050
1 8(30), BSOLX(35), BSOLY(30), FLB(3O),FIX(35),FIXI(351, 00000060
2 FUB(30), S(30), SOLX(35)t STX(12ZF) 00000070

0002 REAL MINC(35), NMINC(35) 00000080
0003 DIMENSION C(35,35[, DIFBR(35), KT2(35), MIND(31) 00000090
0004 -INTEGER BRO, BRI, FC, FCUB, P 00000110
0005 REAL LOWB, MAXDIF, MrNSC 00000120

C **************OPTIONS AVAILABLE: IINPTt ICAPR, ISTEP, IUNCAPEPS 00000130
C IINPT=1 IF INPUT LISTING DESIkED 0 OTHERWISE 00000140

0 C ICAPR=l IF CAPACITY RULE TO BE USED; 0 OTHERWISE 00000150
C ISTEP=O IF LISTING OF INTERMEDIATE STEPS 00000160
C NOT DESIRED. ISTEP=I IF SUMMARY~ OF BRANCH & 00000170
C BOUND NODES DESIRED. ISTEP=2 IF DETAILED 00000180
C LISTING O= INTERMEDIATE STE"S DESIRED. 00000190
C IUNCAP=l ;F SOLVING AN UNCAI'ACITATED PROBLEM, 00000200
C 0 OTHERWISE. 00000210
C EPS= A FRACTIONAL VALUE IF LUBfPTIMAL 00000220
C SOLUTION DESIRED, E.G., EPSZLUN AS 0.005 00000230
C IMPLIES SOLUTION TO BE WITHIN -C.5 PERCENT 000)0240
C OF THE OPTIMAL SOLUTION. EPS=0.0 IF OPTIMAL 00000250
C SOLUTION DESIRED. 00000253

y C ET= ELAPSED TIME IN SECDNDS, 1, SOECIFIED, AT 00000256
L WHICH THE NODE AND BOUNDS RELATED INFORMATION 00000260
C IS PRINTED. THIS IS USEFUL IN A SITUATION IF 00000263
C ISTEP=0 AND THE PROGRAM TERMINATES BEFORE 000002b6
C REACHING THE FINAL SOLUTION. 00000270
C ****, *********READ INPUT AA*****SJ**$****S* 00000273

0006 READ 10, IINPT, ICAPR, ISTEP, IUNCAP, EPS, ET 00000280
O007 10 FORMAT (411, F6.59 F10.3) 00000290

C Ma NUMBER OF DESIGNS 00000300
C N= NUMBER OF ACTIVITIES 00000310
C P= NUMBER OF FACILITIES 00000320

0008 REAb 20,MNP 00000330o 0009 20 FORMAT (315) 00000340
C ACI,J): VARIABLE COST MATRIX 00000350

0010 READ 30, ((A(I9J), I=1,M),J=1,NI 00000360
O 0011 30 FORMAT (8110) 00000370

C B(K-): FIXED COST VICTOR 00000380
0012 READ 30, (B(K),K=I,P) 00000390

O OU13 IF (IUNCAP.EQ.I) GO TO 40 00000400
C S(K): CAPACITY LIMIT VECTOR; REQUIRED ONLY 00000410

C IF IUNCAP=O 00000420
001,0 READ 0o IS(K),K=1,P) 00000430

C D(ItJK): CAPACITY USAGE MATRIX; REQUIRED 000OC440
C ONLY IF IUNCAP=O 00000450

0015 DO 32 K=1,P 00000460
0016 READ 30t((O(IJ,K|, I=,MI#J=I,NP 00000470
Ou17 32 CONTINUE 00000480
0018 00 37 K=IP 0000049C
0019 O 37 I=1,M 00000500
0020 IF (0(I,[,KI.EQ.OI GO TO 35 00000510
U021 E(I,KI=l 00000520
0022 GO TO 37 00000530

AD-AI02 583 GEORGE WASHINGTON UNIV WASHINGTON DC PROGRAM IN LOGISTICS F61/
SOLVING MULTIACTIVITY MULTIFACILITY CAPACITY-CONSTRAINED 0-1 AS-fETC(U)
MAY 81 K L CNNABRA N000OI'S0-C-0169

UNCLASSIFITED SERIAL-TA411 t2-2ffffffffffff

4

- 85 -

FORTRAN IV G LEVEL 21 MAIN DATE 80315 11/07/24

0023 35 E(I.KIaO 00000540
0024 37 CONTINUE 00000550

f 0025 GO TO 90 00000560
C E(IK): DESIGN-FACILITY MATRIX; REQUIREO ONLY 00000570
C IF IUNCAPZI 00000580

C 0026 40 READ 45,((EIIK#IzlqM),KwI,P) 00000590
0027 45 FORMAT (8011) 00000600
0028 DO 80 Ks1tP 00000610

G 0029 F(KIN 00000620
0030 DO 75 I=1,M 00000630
0031 IF (E(ItK).EQ.ll GO TO 65 00000640

o 0032 DO 60 J=1,N 00000650
00j3 DOIJtK)uO 00000660
0034 60 CONTINUE 00000670

o 0035 GO TO 75 00000680
0036 65 DO 70 J=stN 00000690
0037 D(I#JK)-l 00000700

o 0038 70 CONTINUE 00000710
0039 75 CONTINUE 00000720
0040 80 CONTINUE 00000730

o C *S*********** PRINT INPUT OATA*************************** 00000740
0041 90 PRINT 959 IINPT, ICAPR9 ISTEP, ILNCAP, EPS, ET 00000750
0042 95 FORMAT (0'10, OPTIONS SELECTED : IINPT=09I11 00000760

O 1 0 ICAPRZ',II, ' ISTEP=',I11 I IUNCAP=',IIq 00000770
2 * EPSS',F8.5, I ET=', FIO.3///) 00000780

0043 IF (IINPT.EQ.OI GO TO 168 00000790
0044 PRINT 100,MNP 00000bOO
0045 100 FORMAT (*ODt T559 'INPUT DATA*,/IX, T559 -- -- ',//////IX, 00000810

1T41, 'NUMBER OF DESIGNS (M)=19 4Xtl4//lXtT41, 00000820

o 2NUMBER OF ACTIVITIES (N,' 1X14//1X, T'.1, 00000830
3'NUMBER OF FACILITIES (Pl=',IX, 14///1 00000840

0046 PRINT 105 00000850
O 0047 105 FORMAT (4X, 'VARIABLE COST MATRIX AlIJ)9.'4X, 00000860

I' "-'l/) 00000870
0048 DO 110 ImIM 00000880

0 0049 110 PRINT 1159 It fA|IJ),J=IN) 00000890
0050 115 FORMAT (0',t T6, 'I='t 139 4X981139 4(/9 14,t8113)) 00000900
0051 PRINT 120 00000910

0 0052 120 FORMAT('0',//4XOFIXEO COST VECTOR BIK)',/4X, 00000920
1 -, -- ' /- 00000930

0053 PRINT 122, fB(K),K=IP) 00000940
o 0054 122 FORMAT ('00, 715, 8113t 31/, 14X,81131) 00000950

0055 PRINT 125 00000960
0056 125 FORMAT('0',//4X,'CAPACITY LIMIT VECTOR SWI.*,/4X, 00000970

*s ' -- I, /1 00000980

0057 PRINT 128, (S(K)tK=1-P) 00000990
0058 128 FORMAT '0', T15, S113, 3(/t 14X,I13)) 00001000

* 0059 PRINT 130 00001010
0060 130 FORMAT(tOt,//4X, 'CAPACITY USAGE MATRIX Dl(,JK't,/4X 00001020

'--- -....-- 99.. /) 00001030
0061 DO 150 K=IP OOOO140
OOb2 PRINT 1359K 00001050
0C63 135 FORMAT ('O'//SX,'K=*9I3/) 00001060

f 00o4 00 145 1=1,M OCOO1070
0005 PRINT 14Ot1,D(IqJK), J=IN) 00001080
0066 140 FORMAT (t09, T6, 'I=', 139 4X98139 4(/t 14X@8113)1 00001090

* O07 145 CONTINUE 00001100
0068 150 CONTINUE 00001110

..K ln. li mi

86-

FORTRAN IV G LEVEL 21 MAIN OATC A 0315 11/07/24

0069 PRINT 155 00001120

0070 155 FORMAT°O'O,//4X,'DESIGN-FACILITY MATRIX E(IK!0,/4X, 00001130
to '------ ,/) 00001140

0071 00 160 lIT 00001150

0072 PRINT 158, It (EII,K),K=1IP) 00001160

0073 158 F2RMAT ('Olt T6, *1'=, 13, 4X98113, 3(/, 14X,8113J) 00001170

0074 IoO CON.INUE 00001180

0075 168 IF IISTEP.EQ.0I GO TO 190 00001190

0076 IF (ISTEP.EQ.1I GO TO 175 00001200

0077 PRINT 170 00001210
0078 170 FORMAT ('0',///55XIDETAILED LISTING OF STEPS6,/) 00001220

0079 GO TO 190 00001230

0080 175 PRINT 180 00001240

0081 180 FORMAT ('0',///55XOSUMMARY OF STEPS'#/) 00001250

0 C s$$ss $sssNITIALIZEssssos* s**sS*s************ 00001260
0082 190 BUB=9999999. 00001270
0083 BUBS= BU8/ (I.OEPS) 00001280
0084 NSX=O 00001290
0085 NOD=I 00001310

0086 IBNOD=1 00001315
0087 INET=O 00001320
0088 INSET=O 00001330
0089 DO 205 JcttN 00001390
0090 F:X(J)=O 00001400
0091 KT2(J)=O 00001410
0092 DO 205 I=IM 00001420

0093 CX(IJ)=O 00001430
0094 205 CONTINUE 00001433

0095 LQI--O 00001436
0096 LQ2=O 00001440

0097 LR2=0 00001443
0098 CALL TIMET(ITO) 0000145

o 0099 IF (ISTEP.EQ.O) GO TO 208 00001448

0100 PRINT 220,NOD 00001450

0101 208 IF(NSX.EQ.0) GO TO 283 00001453

, C CX(IJ) CONTAINS FIXED AND FREE X(IvJ) VARIABLES. 00001456
C STX(INS) CONTAINS FIXED X(IJ) VARIABLES. 00001460
C CXII#J) AND STX(INS) ARE UPDATFD BY THE CAPACITY 00001480

o C RULE, THE BOUNDING RULE, AND THE RULE FOR 00001490
C BRANCHING AND BACKTRACKING. 00001500
C IN CX(IJ) A FIXED VARIABLE ,S RECORDED AS I OR 00001505

O C 2, AND A FREE VARIABLE AS 0. 00001510
C A VALUE OF I IMPLIES THAT THAT PARTICULAR VARIABLE 00001515
C IS FIXED, AND FIX(J) IS SET EQUAL TO I IMPLYING 00001520

C THAT COLUMN J HAS A FIXED VARiaBLE OF VALUE 1. 00001525
C A VALUE OF 2 IMPLIES THAT THAT PARTICULAR VARIABLE 00001530
C SHOULD NOT BE CONSIDERED FOR CURAEmT COMPUTATIONS. 00001535

* C AN X(IJ) RECORDED IN CXlIJ) AS I DUE TO THE 000015-0
C BRANCHING RULE IS RECORDED IN STX(NSI AS X'10OOJ. 00001545
C AN XIIJ) RECORDED IN CXIIJ) AS I DUE TO THE 00001550

C CAPACITY RULE OR THE BOUNDING RILE IS RECORDED IN 00001555
C STX(INS) AS IXOIO+J).IOOCOOO. 00001500
C AN X(19J) RECORDED IN CX(IJ) AS 2 IS RECORDED IN 00001565
C STX(INS) AS -(X*LOO+Jl-IOOOOU. 00001570

0102 210 IF (IS
T
EP.LQ.0 GO TO 225 00001560

0103 215 PRINT 2ZO,NOD 00001590
U104 220 FORMAT ('O@,//bX,'N0DE NUMBER', 17/1 00001600

C *************UPDATE CX(IJ; FOR BR0#$#$$$t"$$$t$$#$$$$$$$$#$ 00001610

- 87 -

FORTRAN xV G LEVEL 21 R AIN DATE 80315 11/071/24

C SRO IS THE RIGHT BRANCHING VARIABLE 00001615
0105 2115 LXmSRO 00001620
0106 IXzLX/10 00001630

0107 JX.LX-IX100 00001640
0108 CXIIX*JX)=2 00001650
0109 KT2(JXI)KTZIJX)+l 00001660
0110 FIXIJX)=O 00001720
0111 LQI1LQ1-1 00001725

O 0112 IF (KT2IJX).LT.(M-1)) GO TO 270 00001730
0113 00 255 IsIM 00001740
0114 IF (CX|IIJX).EQ.21 GO TO 255 00001750

o 0115 CX(IqJX)=l 00001760
0116 NSX=NSX.l 00001763
0117 STX(NSX)* (I*O00 JX)+I00000 00001766

0 0118 FIX(JX)wI 00001770
0119 LQI=LQI I 00001780
0120 FIXIIJX)21 00001790

0 0121 GO TO 270 00001800
0122 255 CONTINUE 00001810
0123 270 LQ2=0 00001820

0 0124 LR2=0 00001825
0125 GO TO 283 00001830
0126 272 IF IISTEP.EC.O) GO TO 276 00001840

0 0127 PRINT 220,NOO 00001850
C *************SUPDATE CX(IJ) FOR BR1******..**********S******* 00001853
C BRI IS THE LEFT BRANCHING VARIABLE 00001856

C 0128 276 LQ2w0 00001860
0129 LR2=0 00001866
0130 LX=BRI 00001870
0131 1X-LX/0 00001875
0132 JXwLX-IX*100 00001880
0133 CXIXXtJX)1l 00001885

0 0134 FIX(JX)zI 00001890
0135 LQ1=LO1 1 00001892
0136 00 279 I=19M 00001895

0 0137 IF OIX.EQ.I1 GO TO 281 00001897
0138 279 CONTINUE 00001900
0139 281 FIXI(JXI=IX 00001902

0 0140 283 IF (ISTEP.NE.2 GO TO 303 00001905
0141 285 00 295 IIM 00001910
0142 PRINT 290, IICX(IJlJxl,Nl 00001920

* 0143 290 FORMAT (/SX.'CXfIIJ)',4X,'lu%,1392X, 2014/23X, 2014 00001930
0144 295 CONTINUE 00001940
0145 PRINT 297,fFIXIJ),J=1,N) 00001950
0146 297 FORMAT (/5XIFIX(J)',12X# 2014/23X, 2014) 00001960

C **************APPLY CAPACITY RULEe*eeeeee.*ee**S**Se**** 00001970
C AND UPDATE CXIIJ) AND STXIINS). 00001980

* 0147 303 00 307 K=1,P 00002000
0148 FLBIK):O 00002015
0149 307 CONTINUE 00002025
0150 310 00 2000 K1lP 00002030

C FIND THE SUM OF MINIMUM DIItJ*K) OVER EACH J FOR A 00002040
C GIVEN K, I.E., MINSC- SUM OF vING(J) 00002050

f 0151 MINSD=O 000020*0
0152 00 I,00 JclvN 00002070
0153 IF(FIXIJ).EQ.0 GO TO 350 00002030

C IF FIX(J)=1, SET MINU(J):0(ItJKI FOR CX(IIJI=I 00002090
C AND MOVE TO NEXT COLUMN J 00002100

-88-

FORTRAN IV G LEVEL 21 MAIN DArE a 80315 11/07/24

0154 INDI:FIXI(J) 00002110
0155 MINO(J)=O(INDIJvK) 00002120

0156 GO TO 800 00002130
0157 350 LK=O 00002160
0158 1=1 00002170
0159 MINDIJ)=D(I,J,K) 00002180

C SKIP O(I,JtK) WHEN CX(IJps2 C MOVE TO NEXT ROW I 00002190
olbo 400 IF(CXIIJ).EQ.2) GO TO 600 00002200

0161 500 'F(OItJK).LT.MINO(J)) MINOfJ)oO(rvJ,X) 00002210
01o2 GO TO 700 00002220
0163 600 LK=LK+ 00002230
0164 IF(I.GT.LKI GO TO 700 00002240
0165 I=1.1 00002250
oh.6 MIND(JimO(IIJK) 00002260

0167 GO TO 750 00002270
01o8 700 I=X L 00002280
0169 750 IF(I.LE.M) GO TO 400 00002290

O 0170 800 MINSD=MINSD+MINDIJ) 00002300
0171 900 CONTINUE 00002310
0172 910 IF IISTEP.NE.2) GO TO 960 00002320

o 0173 PRINT 950, K, MINSO,(MINO(J)tJwl9N) 00002330
0174 950 FORMAT ('t'KMINSD(MINO(J)J=ENlEOIItO4(/944X8I1O)) 00002340
0175 960 IF (MINSD.EQ.0 GO TO 975 00002342

o 0176 965 IF(FLB(KI.EQ.11 GO TO 975 00002344
0177 970 F,.B(Klwl 00002346
0178 975 IF (IUNCAP.EQ.l GO TO 2000 00002348

O 0179 978 If lICAPR.EQ.O) GO TO 2000 00002349
C FIND SALANCE AVAILABLE CAPACITY IBALD FOR A GIVEN K 00002350
C IF IBALD IS NEGATIVE, THEN BACKTRACK. 00002360

0180 980 IBALO-S(K)-MINSO 00002380
0181 1000 IF (IBALD.LT.01 GO TO 6200 00002390
0182 00 1500 J=lN 00002400

o C SKIP COLUMN J IF FIX(JAI- 00002410
0183 IF (FIXIJI.EQ.1) GO TO 1500 00002420
0184 00 1300 I-LtM 00002430

(C SKIP ROW I IF CX(IJI=2 00002440
0185 1100 IF(CX(IJJ.EQ.21 GO TO 1300 00002450

C COMPUTE DIFFERENCE BETWEEN 0111 JK) AND MINO(J). 00002470
o C IF IT 15 MORE THAN AVAILABE BALANCE, SET CXiTJ)u2 00002480

0186 1200 DIF=DfI9JK)-MINDIJ) 00002490
0187 IF IIDIFD-IALD).LE.0) GO TO 1300 00002510

O 0188 CXfItJ)z2 000025ZO
01a9 NSX=NSX.1 00002523
0190 STX(NSX)-(I*100OJ)-1000000 00002526

C LQ2 COUNTS THE NUMBER OF CX(I1J) VALUES SET EQUAL 00002530
C TO 2 IN A CYCLE 00002540

0191 LQ2=LQ21 00002550

o C KT2(J) KEEPS AN ACCOUNT OF CX(ItJl VALUES SET EQUAL 00002560
C TO 2 FOR COLUMN J 00002570

0192 KT2|J):KTZ(J)41 00002580
C FOR COLUMN Jt IF ALL BUT ONE CX(19J) VALUES ARE 00002590
C EQUAL TO 2. SET THAT CX(IJI=l & SET FIX(JIsl 0000OO00

0193 IF(KT2{J).LT.(M-11) GO TO 1300 00002610
U194 00 1250 LRvItM 00002620
0195 IF(CX(LR*JI.EQ.2) GO TO 1250 00002630
0196 C('RJI=1 00002640
0197 NSX=NSX.l 00002643
0198 STX(NSXI= (LRIOOJ[.100000 00002646

-89-

FORTRAN IV G LEVEL 21 MAIN OAiE a 80215 11/07/24

0199 FIX(JIBL 00002650

C LQI KEEPS AN ACCOUNT OF COLUMNS FOR WHICH FIX(J)xl 00002655

0200 LQE=LQI*1 00002660
C FIXIIJ) SPECIFIES INOEX I FOR WHICH FIX(J)m1 00002662

0201 FIXX(JI=LR 00002665

0202 GO TO 1500 00002670

0203 1250 CONTINUE 0000'680

0204 1300 CONTINUE 00002690

p 0205 1500 CONTINUE 00002700

0206 1800 iF IISTEP.NE.2) GO TO 2000 00002710

0207 PRINT 1900, K, L02, LQI 00002720

0208 1900 FORMAT ('01K=9#I3, L02=lti3, 0 LQI=', 13) 00002730

0209 00 1930 IslM 00002740

O210 PRINT 290, I,(CXfItJ)J=LvN) 00002750

) 0211 1930 CONTINUE 00002770

0212 PRINT 297, (FIX(J~oJ=INI 00002780

0213 2000 CONTINUE 00002800

C A CYCLE EXAMINES ALL THE FACILITIES. 00002803

C IF IN A CYCLE, THE CAPACITY RULE RESULTS IN SETTING 00002810

C AUOITIONAL CX(IJ) VALUES EQUAL TO 2, THEN REPEAT 00002820

C THE CYCLE. BUT IF FIXIJ)mI FOR ALI J, THEN 00 NOT 00002830

C REPEAT THE CYCLE. 00002835

0214 IF ILQI.EQ.N) GO TO 2400 00002840
N 0215 IF (LQ2.EQ.LR2) GO TO 2400 00002845

0216 2200 LR2=LQ2 00002860

0217 GO TO 310 00002870

C *************SOLVE (LAGRANGIANI RELAXED PROBLEM************* 00002880

C UPDATE VECTOR OF FACILITIES FLB(K) FOR COMPUTING 00002890

C C(IqJi MATRIX & LOWER BOUND. zr HAS VALUE I iF A 00002900

C FACILITY IS USED, OTHERWISE IT HAS 0 VALUE. 00002910

G218 2400 DO 3000 JxIN 00002950

0219 IF (FIX(J).EQ.0 GO TO 3000 00002960

0220 INDI=FIXI(J) 00002970

0221 DO 2550 K=IP 00002990

0222 IF (E(INDIK).EQ.0I GO TO 2550 00003000

0223 IF fFLB(K).EQ.I) GO TO 2550 00003010

0224 FLBIK)=l 00003020

0225 2550 CONTINUE 00003030

0226 3000 CONTINUE 00003060

0227 IF (ISTEP.NE.21 GO TO 3150 00003070

0228 PRINT 3100, (FLB(K),K=19P) 00003080

0229 3100 FORMAT(''O,1(FLB(KIKltPI It 2014/16X*2014l 00003090

C COMPUTE COST MATRIX C(IJ) FOR THE RELAXED PROBLEM 00003100

0230 3150 00 3400 J=1,N 00003110

0231 DO 3300 IwIM 00003120

0232 BSUM=O.0 00003130

0233 Do 3200 X-ItP 00003140

0234 IF (FLBIKI.EQ.1) GO TO 3200 00003150

0235 IF fEfI,K).EQ.O) GO TO 3200 000031b0

OZ36 BSUM=BSUM.(B(K) * (FLOATI(IIJ*K))/ FLOAT(SIK)III) 00003170

(0237 3200 CONTINUE 00003180

0238 3250 C(1,J)=A(IJ)*BSUM 00003190

0239 3300 CONTINUE 0000300
ozO 3400 CONTINUE 00003210

U241 IF IISTEP.NE.2) GO TO 3445 00003220

0242 DO 3430 I1,M 00003230

0243 PRINT 3420, It (C(IIJ)J=I*N) 00003250

L24 3420 FORMAT (/5X, *ClIqJ),vSXt 'It*, 13,2X, 5FS15.4 00003260

I
- 90 -

FORTRAN IV G LEVEL 21 MAIN DATE 80315 11/07/24

I 6(/23X, 5F15.4)1 00003265
0245 3430 CONTINUE 00003270

(C FIND SUM OF MINIMUM C(IJ? VALUES OVER EACH Jt 00003290
C I.E., M1NSC=SUM OF MJNC(J). 00003300
C IF FIXtJI1, THEN MINCIJ)=CIJj) WHERE CXiltJ)al 00003310

C 0246 3445 MINSC=0.0 00003320 '
0247 DO 3900 JutN 00003340
028 IF (FIX(J).EQ.O) GO TO 3500 00003350

O 0249 INDI=FIXI(J) 00003360
0250 MINC(J)zC(INDI.J) 00003370
OZ5l SOLX(J)=INOI 00003380

) 0252 GO TO 3850 00003410
0253 3500 LK=O 00003430
0254 1=1 00003440

o C SKIP C(ItJl ELEMENT IF CX(,J)=2 M MOVE TO NEXT 1 00003470
0255 3550 IF (CXII,J).EQ.2) GO TO 370. 00003480
0256 IF I(I-LK).EQ.o) GO TO 3600 00003485

0 0257 IF (CIIJ).GE.MINC(J)) GO TO 3750 00003490
0258 3600 MINC(J)=CIItJ) 00003500
0259 IMIN=I 00003510
0260 GO TO 3750 000035Z0
0261 3700 LK=LK+ 00003530
0262 3750 lzI 1 00003590
0263 3800 IF (I.LE.M) GO TO 3550 00003600
02O4 SOLX(J)=IMIN 00003610
0265 3850 MINSC=MINSC+MINCIJ) 00003620
0266 3900 CONTINUE 00003630
0207 IF iISTEP.NE.2) GO TO 3940 00003640
02*8 DO 1320 J=I,N 00003650
0269 PRINT 3910, JMINC(J),SOLX(J) 00003660
0270 3910 FORMAT (0','JtMINC(J)#SOLX(J)*, 15,F15.4,16) 00003670
0271 3920 CONTINUE 00003680

C COMPUTE FIXED COST FC FOR L(WER BOUND 00003710
0272 3940 FC=O 00003720
0273 DO 4000 K=1,P 00003730
0274 IF (FLB(K).EQ.0) GO TO 4000 00003740
0275 3950 FC=FC+B(K) 00003750
0276 '000 CONTINUE 00003760

C **************COMPUTE LOWER BOUND LOWB**$*e*e***e*** e*e 00003770
0277 4050 LOWB=MINSCeFC 00003780
0278 IF (ISTEP.EQ.O) GO TO 4150 00003790

C) 0279 PRINT 4120, mINSC, FC, LOWS 00003800
0280 412Z FORMAT (004,' MINSC, FC, LOWS *, F15.4, I1S, F1S.41 00003810

C COMPARE LOWER BOUND WITH BEST UPPER BOUNO STAR 00003820
C BUBS WHICH EQUALS BUB/(I1EPS). IF LOWS IS 00003830
C GREATER THAN OR EQUAL TO BUBS, THEN BACKTRACK 00003840

OZs1 4150 IF CLOWSB.GE.BUBSIGO TO 6200 00003850

C CHECK IF CURRENT SOLUTION SATISFIES CAPACITY 00003880
C CONSTRAINTS 00003890

0212 4200 IF (IUNCAP.EC.1) GO TO 4420 00003900
0283 4210 DO 4400 K=lvP 00003910
0284 NSUMD=O 00003920
02t5 DO 4300 J*1,N 00003930
C2Uo IX=SCLX(J) 00003950
0207 NSUMO=N$UMD0OI1XJq K) 00003960
U268 4300 CONTINUE 00003970
0Zb9 IF (ISTEP.Ni.2I GO TO 4320 00003980
0290 PRINI 4310s KtNSUMO 00003990

r - -'I-

-91-

FLRTRAN IV G LEVEL 21 MAIN DATE 2 80315 11/07/24

0291 4310 FORMAT ('0' #K#NSUMO'2110) 00004000
0292 4320 IF(NSUMD.LE.SIK)) GO TO 400 00004010

(0293 GO TO 5100 00004020
0294 4400 CONTINUE 00004030

C ****S*********CCMPUTE UPPER BOUND UPS IF CAPACITY CONSTRAINTS 00004040

C C ARE SATISFIED. 00004050
C UPB=SUM OF A(IJ)eFIXED COST FCUB BASED ON 00004060
C SOLUTION VECTOR SOLXIJ) 00004070
C VECTOR OF FACILITIES FOR UPPER BOUND FUBIK) HAS 00004080
C VALUES I OR 0 BASED ON FACIIILY USED OR OTHERWISE 00004090

0295 4420 DO 4450 K=Z1P 00004100
o 0296 FUS(Klw0 00004110

0297 4450 CONTINUE 00004120
0296 NSUMA=O 00004130
0299 FCUB=O 00004140
0300 4500 DO 4650 J2-1N OOC 4150
0301 IX=SOLX(J) 00004170o 0302 NSUMA=NSUMA+A(IXtJ) 00004180
0303 4550 DO 4600 KzIP 00004190
0304 IF(EfIXvK).EQ.O) GO TO 4600 00004200

o 0305 IF(FUBIK).EQ.1) GO TO 4600 00004210
0306 FUB(K)=l 00004220
0307 FCUB=FCUBeB(K) 00004230

o 0308 4600 CONTINUE 00004240
0309 4650 CONTINUE 00004250
0310 IF (ISTEP.NE.2) GO TO 4700 00004260
0311 PRINT 4660, (FUBIK)tK=ItP) 00004270
0312 4660 FORMAT(0O,*(FUB(Kh1K=1P) 9, 2014/16X,20141) 00004280
0313 4700 UPB=NSUMA+FCUB 00004290

L 0314 4708 IF (ISTEP.EQ.0) GO TO 4750 00004300
0315 PRINT 4710t NSUMA, FCUS, UPB BUBt SUBS 00004310
0316 4710 FORMAT('09'NSUMAt FCUB, UPS, BUSt BUSS ',21109 :FI5.41 00004320

C COMPARE UPPER BOUND WITH BEST UPPER BOUND 00004330

C IF UPS IS LESS THAN BUSt SET IT AS BUS AND 00004340
C NOTE THE SOLUTIUN 00004350

03T 4750 IF (UPS.GE.BUB GO TO 5100 00004360
0318 4770 BUBxUPS 00004370
0319 BUBSX BUs/ I1.0EPS) 00004380
0320 IBNOO--NOD 00004385
0321 PRINT 4780v ISNOD9 BUSt BUSS 00004386
0322 4780 FORMAT ('0' 'ISNOD, BUB SUBS' 1109 2F15.41 00004388
0323 00 4800 JaIrN 00004390
0324 4800 BSOLX(J)=SOLX(J) 00004400
0325 00 4850 K-1tP 00004410

D 032o 4850 SSOLY(KI=FUB(K) 00004420
C **************COMPARE LOWS WITH BUSS. IF LOWS IS GREATER 00004430
C THAN OR EQUAL TO SUBS THEN BACKTRACK 00004440

0327 4900 IF (LOWB.GE.BUSS)GO TO 6200 00004450
C *O ** IF FIXIJ) VALUES ARE I FOR EACH J, THEN BACKIRACK 00004480

0328 5100 IF (LQI.EQ.N) GO 10 6200 00004500

SC ****0 ****s*APPLY THE BOUNDING RULE*****.****S*J*****S***.S2 00004510
C IF THE DIFFLRENCE BETWEEN C(IJ) AND MINCIJ) is 00004515
C GREATER THAN THE DIFFERENCE BETWLEN BUSS AND 00004520
C LOWSv THEN CX(IJ)Z= 00004525
C *0**S*$**$****APPLY BRANCHING RULE AND FIND SRI# THE NEXT 00004530
C VARIAoLE FOR LEFT BRANCHING. 0000O540
C FIND NMINC(JIt THE NEXT HIGHER VALUE THAN MINCiJ) 00004550
C ANO OIFBR(Jl, ThE UIFFERENCE B'TWEEN THEM. 00004555

- 92 -

1URIRAN IV G LEVkL 21 MAIN DArE 8 80315 11/07/24

(0329 DBOUNDzSUBS-LOWO
00004568

0330 5200 00 5250 J=LtN
00004570

0329OBONOSEBSL~dB00004580
(0331 NMINCIJ)=O.O 00004580

0332 DIFORIJ)=O.O 00004600

0333 5250 CON7INUE 00004610
C0334 D0 5600 J=IvN SKIP TO NEXT J IF FIX(Jl=l 00004620

0335 IF (FIXIJ).EQ.1) GO TO 5600 00004630
00004640

0336 -KzO 00004650
C SKIP C(rJ, IF CX(IJI= C tOVE TO NEXT 1 00004670

0338 5300 IF ICX(I,J).EQ.2) GO TO 5350
00004680

0339 IF (I.EQ.SOLX(J)) GO TO 5350
00004690

0340 IF ((C(I*J)-MINC(JI).GT.DBUNOI GO TO 5330 00004700

o 0341 IF II-LK).EQ.) GO TO 5320 00004710'

0342Z IF IC(IJ).GE.NMINC(J)) GO TO 5400 00004720

0343 5320 NMINC(J)C(IJI 00004730

c 0344 GO TO 5400 00004735
0345 5330 CX(I,J)=2 00004740

0346 NSX=NSX+l 00004742

0347 STX(NSX)=-(I110O+J)-4O000 00004745

0348 KT2(JilKTZ(J)4I
00004747

0349 tF(KT2IJ).LT.(M-1)) GO TO 5350
00004750

0350 JNDI=SOLX(J)
00004752

0351 CX(INDIJ)1
00004755

0352 NX=NSX*
00004758

0353 STX(NSX)a (INDIOI00+JI+1000000
00004760

0354 FIXIJ)=1
30004762

0355 LQI=Lgt l
00004764

0356 FIXI(J)=INDI
00004766

0357 GO TO 5600
00004768

0358 5350 LK=LK 1
00004770

0359 5400 I=I41
00004775

0360 IF(I.LE.M) GO TO 5300
00004780

0361 5500 DIFBRIJ)=NMINC(J)-MINClJ)
00004785

0362 5600 CONTINUE
00004790

0363 IF (ISTEP.NE.21 GO TO 5650 00004795

0364 DO 5620 1=19M
00004820

0365 PRINT 290, I,(CX(I,J),J=lNI
00004830

0366 5620 CONT.NUE
00004850

0367 PRINT 297, (FIX(J),J=s1N) 00004860

C IF FIX(JI=1 FOR ALL J, THEN eACKTRACK. 00004880

0368 5650 IF (LQI.EQ.N) GO TO 6200
00004890

C FIND 4AXDIFt THE MAXIMUM DIF-ERENCE DIFBRIJ) 00004900

0369 LF=O
00004905

0370 00 5800 J=1,N
00004910

0371 IF (FIX(J).EQ.I) GO TO 5690
00004915

O 0372 IF (IJ-LFI.EQ.1) GO TO 5660 00004920

0373 IF (DIFBR(JI.LT.MAXDIFI GO TO 5800
00004925

03-14 5660 MAXDIF=OIFBR(J)
00004930

0375 LJ=J
00004935

0376 GO TO 5800
00004%40

0377 5690 LF=LFI
00004943

0378 5800 CONTINUE
00004946

0379 IF !ISTEP.Ni.2) Go TO 5840 00004950

0330 00 58Z0 J=1,N
00004953

03ai IF IFIX(JI.EQ.1I GO TO 5820 00004956

03d2 PRINT 5810, J, NMINC(J)v MINC(J), DIFBRIJ) 00004960

r9-

FORTRAN IV G LEVEL 21 MAIN DATE = 30315 11/07/24

0383 5810 FORMAT (0O'tJtNMINC(JbtMINCIJtOZFBRIJ't I593F15.4) 00004963
038 5820 CONTINUE 00004966

C *****S*******BRANCHING VARIABLE BRI CORRESPONDS TO MAXDIF'**** 00004970
0385 5840 DO 5900 J=1,N 00004980
03b6 IF (J.NE.LJ) GO TO 5900 00004990

r 0387 5850 BRI=SOLXJI'IOOJ 00005000
0388 IF IISTEP.EQ.0) GO TO b020 00005010
0389 PRINT 5880, BRI 00005020 1
0390 5880 FORMAT('O',

*
BRI',IIO) 00005030

0391 GO TO 6020 00005040
0392 5900 CONTINUE 00005050

C *************UPDATE STX(INS) AND NSX******************S****** 00005060
C NSX REPRESENTS THE NUMBER OF VARIABLES IN STXIINS) 00005070

0393 6020 NSX=NSX.1 00005090

D 0394 6040 STXINSX)=BRI 00005100
0395 IF (ISTEP.NE.2) GO TO 6100 00005150
0396 PRINT 6088, (STX(INSDi INS=1,NSXI 00005160

D 0397 o088 FORMAT('0e STX(INS)I, 10110v 122(1/, IOX,10I0Il 00005170
C **********AMOVE TO THE NEXT (LEFT BRANCH) NODE AND APPLY 00005220
C CAPACITY RULE 00005230

0398 610 NOD=NOD 1 00005240
0399 6110 IF (ET.EQ.0.0) GO TO 6150 00005242
0400 IF(INEET.EQ.U) GO TO 6147 00005244
0401 IF (INET.EQ.I) GO TO 6150 00005246
0402 CALL TIMET(INTJ 00005248
0403 ELTN=(INT-I1O)*26.04E-6 00005250
040 IF IELTN.LT.ET) GO TO 6150 00005253
0405 6120 PRINT 6125, NOD, ELTN, BUB, BUBS, IBNOO 00005256
0406 b125 FORMAT ('0', 'WAS AT NOOE',16t I AT ELAPSED TIME =to F10.4, 00005260

I ' SECONDS.',/1X, l BUB=',Fl5., I BUBS=tFL5.4 00005263
2 t AT NODEz',171 00005266

0407 IBUB8=UB 00005267
0408 IF (IBUB.EQ.9999999) GO TO 6146 00005268
04U9 6130 PRINT 6135, (BSOLX(JIJ=1,N) 00005270
0410 o135 FORMAT('0O, 'SOLUTION CORRESPONDING TO SUB Is', //1IX, 00005273

1 *(BSOLXIJ), J=1N)',tOI8,3(/18X,OI811 00005276
0411 6140 PRINT 6145, (BSOLY(K), K=ItPI 00005280
0412 6145 FORMATI/IX,'(BSOLY(K), K=IP)'II8,2(/I8X, 1O18)) 00005290
0413 6146 INET=l 00005292

0414 INIS=ISTEP 00005294
0415 INSET=I 00005296
0416 ISTEP=2 00005298
0417 GO TO 6150 00005300
0418 6147 ISTEP=INIS 00005302
0419 INSET=O 00005304
0420 6150 GO TO 272 00005306

C **************ENO IF AT THE ROOT NOOE*S***S. ******S**** 00005308
0421 6200 IF (NSX.EQ.0) GO TO 8100 00005310
0422 6220 IF (IABS(STXINSX)).GT.L00000I GO TO 6500 00005320
0423 6250 BRO=SIX(NSX) 00005330
0424 6270 STX(NSX)=-BRO-IOC000 00005340
0425 IF (ISTEP.Q.O2 GO TO 6308 00005390
04 6 PRINT 6305, BRO 00005400
0427 b305 FORMAT110, 'BRO '.110) 00005410
04 8 6308 IF (ISTEP.NE.2) GO TO 6330 00005420
G4Z9 PRINT 6088, (STX(INS), INS=ItNSXI 00005430

C *$****$8*s**MOVE TO THE NEXT (RIGHT BRANCH) NUUE AND APPLY 00005490
C CAPACITY RULE 00005500

I-94 - _

FORTRAN IV G LEVEL 21 MAIN DATE 6 80315 11/07/24

0430 6330 NCO=NODl 00005510
0431 6410 IF IET.EQ.O.0) GO TO 6450 00005512
0432 IF fINSET.EQ.1) GO TO 6445 00005516
0433 IF (INET.EC.l) GO TO 6450 00005518
0434 CALL TIMET(INTI 00005520
0435 ELTNw(INT-ITO)*2b.O4E-6 00005523
0436 IF IELTN.LT.LT) GO TO 0450 00005526
0437 6420 PRINT 6125, NOO, ELTNt BUB, SUBS, IBNOO 00005528
0438 IBUBZBUB 00005530
0439 IF (I8UB.EQ.9t99999) GO TO 6442 00005532

0440 6430 PRINT 6135, (BSOLX(J)vJ=1,N) 00005533
0441 6440 PRINT 6145, (BSOLY(K), K=I,P) 00005536
0442 6442 INET=I 00005538
0443 INIS=ISTEP 00005540

O 0444 INSET=l 00005542
0445 YSTEP=2 00005544
0446 GO TO 6450 00005546

O 0447 6445 ISTEP=INIS 00005548
0448 INSET=0 00005550
0449 6450 GO TO 210 00005552

Cl 0450 6500 IF (STXiNSX).GT.10000001 GO TO 6520 00005555
0451 LX--STX(NSX)-I00000 00005560
0452 IX=LX/IO0 00005570
0453 JX=LX-IX*IO0 00005580
0454 CXiIX,JX)=O 00005590
0455 KTZ(JXI=KT2(JXI-- 00005595

C 0456 GO TO 6550 00005600
0457 6520 LXx STXiNSX)-IO00000 00005610

0-058 IX=LX/IO0 00005620
0459 JX=LX-IX*100 00005630
040 CXIIX,JX)UO 00005640
0461 F'X(JX)=O 00005650
0462 LQI=LQI-l 00005660
04b3 6550 NSX=%SX-1 00005690
0464 GO TO 6200 00005700

C ************PRINT THE OUTPUT**r*****e*************t** 00005730
0.b5 8100 IBUB=BUB 00005740
0466 CALL TIMET(ITI) 00005750

C) 0467 ELTl=IIT1-ITO)*26.O4E-6 00005760
0468 PRINT 8105, ELTI 00005770
0469 8105 FORMAT (6O',///IX, 'ELAPSED TIME IN SECONOSu't F15.81 00005780

Q 0470 PRINT 8120, NOD 00005790
071 8120 FORMAT I *O','TOTAL NUMBER OF NODES EXPLORED ',131 00005800
0472 IF (IBUB.EQ.9999999) GO TO 8350 00005810

C 0473 8130 PRINT 8150 00005820
0474 8150 FORMAT ['0', 'NOTE: 1. FOLLOWING X(i,J) VARIABLES SHOW DESIGN', 00005830

1 I TO WHICH ACTIVITY J IS ASSIGNED FOR Jal TO N.', 00005840
2 /7Xt '2. IF EPSILON EPS WAS ASSIGNED A POSITIVE', 00005850
3 ' (NON-ZERO) VALUE, THE SOLUTION MAY BE SUBOPTIMAL.0,/1 0000586C

0475 8180 PRINI 82009 (BSOLX(JIJ=IvNI 00005870
0476 8200 FORMAT(1O',r55, 'OPTIMAL SOLUTION' ,/IXtT!, 00005880

I v- --- -- t//IX, 'X(IJ) WITH VALUE 1:',0180 00005890

2 31/,21X,1018)) 00005900
0%77 8220 PRINT 8250, (BSOLY(KI, KsI,PJ 00005910
U476 8250 FORMAT 10', 'YIK VALUES:'. 8Xv 1018p 2(/t21X,10181) 00005920
0479 8280 PRINT 8.00,18UB 00005930
04d0 8300 FORMAT '*0't 'UPT14AL VALUE OF OBJECTIVE FUN:TiON:' 115/I/Il 00005940
04b1 GO TO 8500 00005950

- 95 -

FORTRAN IV G LEVEL 21 MAIN DATE * 8C315 11/07/24

082 8350 PRINT 8400 00005960
0483 8400 FORMAT 100O% * PROBLEM DOES NOT HAVE A FEASIBLE SOLUTION', 00005970

I /lXr I BECAUSE THE CAPACITY CONITRAINTS CANNOT$, 00005980
2 /1X, * BE SATISFIED.',/) 00005990

0484 8500 PRINT 8550 00006000
0485 8550 FORMAT (@O'%'*****NORMAL END OF JOB*****l/) 00006010U486 b600 STOP 00006020
0487 END 00006030

0

APPENDIX

DETAIED PINTOT FO A TST POBLE

(TES PROLEM ITHm=5,n=4,AND =*1

96I

-97 -

I

I
o "*

° 0

a N

a -

o" .

-98 -

0 0 0 0 o 0 00a0 a0 0 0 00 0 00 0

0 8 0 0 080 0 02 9 0

0 0 0 0 0

O O~~~~0 00~ o ~ a0 ~ 0

- 99 -

- - 0 0

- 0 - 0

- 0 - 0

- 0 - -

00 0 0000 00 088 0 000 0 - 0 -
N U ~% C N 4 4 4 0 0 0
- - I ft - ft N ft 4 -

8O80~ ~O00~ -0--ft - N - N N -

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~0~~
-' C U 0 0 0

00 0 000 0 00000 00000 - 0 - -
40 4 N 4 404 04N K

N - - - N - -
U

4
K

-J

'I
4

* V C - N ft C P - N ft * ~ a - N ft C I - N '~ C

* a U U U S S U S I U U U S S A S S S U

- - - U - - - - - - -

~.*

cJn

C14 04

En CA

0 0 0

0 0

o a 0
z

0 &A 0

0S

-101-

Aj~ Ai. e'J

o 0 00

a0a 000 0 0 a0

0 0 0 00 0 0 0 0 0 a 0 0 0 a o o 0 a 0000

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n 0 0 a 00000

S 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 00 0 0

-102-

nE

on "cn;c0

M ~CP
A # 4

a
0 0 00 0

:. "f ; . 0,af fn. 0
& 0 a 4 a 0

0 00 0 0 a0

o 0 p4.

t

a 19

Nomad

-103-

'-41

AiA

in m

oy awy

o a. 0

*v 0 . 0 0
0~ 00 - 0 -at

0~ .0 A 0.0

o a

0~ ~ 0. A 0 0a 0

oe --

Be 4 N 0

of it. 09

N N -

1 04-

CflC.

o 0 0 0 4 C4e a

f4 0

o 0 0

oo 0 0 0

we of N

r -105-

NCIS C

N 0 v 0 r

No 0 0 0

~ N 0 N 0 a 0 0 8 a N 0 N 0 N 0 N 0N 0 N 0

000~ ~~ ~ ~~ NO NO A O 0 0N i 0 0 0N

*~~~ a i

-106-

C .) C14C- C)C.

o 0 00

N 0 N 0 Nd

o y N C0 0 0 Na 0 aN0 N a 0 af
$W%

o o 0 0

N 0 N 0 0 N 0 0 N 0N 0 N0 N 0 a a 0

00 0 0 0 0 0 0 0 0 00 0 0 000 A

-107-

00i

414

En -

Ni a ovi

o 0 U' .i U' 0 W

0~~ ~ ~ 00 0 0

0 m .0 0

Mk.~~~P off0l. -014 1

-108-

'-4

0L. o.

0

00

N 0 0 vI

0 N N 0 f

N~~ ~ 0 0 0 t

in on0
* 0 a

*N o .o m n ' f - 0 0~
- d

~~IN

-109-

;iAv

0 0

on,

00
N'. 0' 0' 0 ('t N y N N f f 4 m4

.0 0 0 00 0 0 0

a 0 N 0 N

WNI WC 0 0 0

I I

'4V

.- ,-

9 9 0 0
* a a *Z a . •

-110-

It 1I
C141

41-

En cn

-N 0

0 W% 0

00

0

o 0 .0p

0 N

P. .0 0

IE IL I
o 0 t

0. 0.

0 0

o 0 0 0

a 0 0 0

No 0 0 a 0

PbibPbP

-112-

zt

00

. .- 0

ca 0 0
ow 0 ' '
A* 0 00

o 0' 0 *

0'; 0' 0 a
o0 0 N Q

0J 0 N
*0 P. 0 .0 all

Ca N 0'00

14 fv Ny N 0 1

4.)A .0 0

N IN
0' 0 me 0' -

* w a

o 0 .4 4 j
IL N4 It b- 4N

T'HE (.OR(; I: WASH IN(GTON UN IV ERS ITY

Program inl Logistics

Distr ibut ion List for Technical Papers

r II..~th Gcorgv Washintgton. tniyersltIy Armed lor.-, lInd-'tt ii olleg'e.. ..
it t ice at Spnoe Restearch
t;e-Iman Library ArmeI 1tar,,-s s'.t eolg,-

%'ice P res ident it. F. Br ight
lDean. Harold tiebowit.' Army War Co I ige ILil'rary ', i

Dealt Henry Solomon. 11 (at p.,. lia. ,; . .

O RArmy Clild ' (;I'll St;,t I L'O leg. *! "

Chi ef ot NavalI Research
(codes 2110, 4114) Army Lo..'i, Mli St (Ulli.- jad," !"I RI .a[,.

Res ident Representat ic For t [I I>. i it r i-ia

0I'NAV Comm, I nd Iit g 01 1 ii' .r I I nAtISKA
01-40 Na.., Cilmiber l.,nd Army Depot 1 1,. 1. a t.,.r
KINO, Logist ic, I o. I F A fit .

Navy Dlept I.i bra r Armv InavenItoiry Res of c
NA'.DA1A Auntomat ion Cmd Philade-lphii dav .1 n. It

Naval Aviat ion Initegrated Lot' Support Arnmv Irans laterial Cmd olAt t hi., :1 sI I

NA\RDACr adh Library va''lIax

Air Force Headquarters I'ti o\ A. I I
Naval Flectronics Lab library AFADS- I Wr, . I tlii

Na va I Fa c i 1i t ia vIs-ag Cmd ldchcI1 1.i b1r a r v SAF /A LL;

Naval Ordnance Stat ion Cr illiss Air Force Base I.
LOUiSVillc. Kv. Re

1
jabil ity Analysis C:enter .

Indian HtIead, M d. itAud. W;n-t
Gunter Air Forc'e Bast-

Naval Ordnance Sys Cmd Librarv AFI.MC/XR rauI5icit

N. ilt -
Naval Research Branchi Offlice Maxwell Air Force Base L.i brarnv hr%~aa It o,

Boston 'r .I..

Chicago Wright-Pa.terson Air Farce Base P I .l

New York AFLC/OA roI I
Pasadena Research Scb lag ' IK
San Franc isco AFA~I./XR

Naval Ship Eng Center Dtel'.tis. f ~ illt,, -sit- PI, LIt I IM'

Philadelphia, Pa. P .I%

Natioanai Academy at S,' ioan-;1sIoI
Naval Ship Rem &. Dev Center Ma~rit ime iransportat i-i 1.-s Bd l I 1,q it'l 1-

Naval Sea Systems Command Nat ional Bureau Lat SE-anld .urd! ro11 1a.i
PMS 30611 Dr Bt. It. Calvin
Tedh Library Dlr Jan ttasenIt-Iitt't......,-

Code 073Nat Iona, I Sc iene I hFaoudit ion
Naval Supply Systems Command I ..

Library Nat lonal Se., or it a Agc't, v r' .I -i
Operations and Inventory Analysis Wepol SV..l aV1Uitl P,. o!t!

Naval War College Library [Ii..- .itv h.iavl,i
Newport Br itih. Navy Stall r, u'.

BLIPFRS Tech Library Na t tona.l [let ense lldqitr s, (it awa .. S.

L.ogistics, II Atalysi-. .ut.,i

FM.'imlerican, lower .1.t it,

USN Ammo Depot Earle teorgi CI.,rniwit. t . .

LUSN Postgrad School Monterey General Diiami is as.

Library
D~r tack R. Bors4ting GeneralI Reseat-I 1, ,i I
Prof C. R. .)ones library v.

US Coast Guard Academy Logist 1, s Malt.,itaiit Illi itit, Prof B. iI.Iislue
Capt Jitmmtie DI. Woods Dtr trr.iy A\. (-,i:. t Thle Ilnnsylatlia Stat, air -It,

U'S Mar ine Corps Rland , orlat loll Prof Seth Bonder
Commandant Library t'l livers !;ma t Mi. hilean11
Deputy Chbe 1.oif Staff, R6D Mr Wi .II I . bIf, 1hr

Prot G. L. I11o,
Marine Corps School Quantica on'I'P i i.iu.i lliversitV Ilt wi-o.. i

Landinmg Force Dev Ctr Dhuh11 A. Sil..I
LAgistlc~q offileer 1'r,, .. lhoml,--n llr Jerome Bracken

tist itut., lot Dviins- Ana.lyar.

Co t - 11. (t'

t'rul A.Cale ('rut W. Ki-ia P~.(ir,,(A. It H vlti

PT t H. k h..'Iu t t MI S. Km.Im I'rtf Illoila, I.. S.jar y

masjii Inst itutl ut I", II.'t Igv (trv . I Mdr i'ivcr,it V 'I I'itts1'.ryI.

Mr WAI I.1Icr M. ('061-1 (' L'(VII,5.

11S (;ene ra I Ac, o,in I.ng ()il I I ve I, t v It "1i j, fii,.(aiindv .''<' I

P'ro.t Masao IFnkushimia Ii I St cv,ii Nihmiav I t '' '-i

Kyoto. LCnivrsits' 1Iivi!ii %v i SankIi.i t.ir,j '*.1

Prof SalI I. ;.%,s 'rut 11. It. Ow,,n 'i

Un~iversity ofI lirviani S'-It~i It, 'iIIi~vtv ~

Dr D(onjald V. m :.ve'r Prot 1'. Rt. Pamu (ma' .mthmy S.'

cajrmc' I. Cal itoroij~ ImlulIm tn~a itt .III k, (t'io I *' T-i 1

P'lot Amrit I.. Gurl ('lut 1'. ('.1rz-11i K

Svrmcnst, t'nivrrsitv l,'~m M N 9nivvrsitv v. i. i

P'rot .t. F. Hlannan P'rut 11. 1m. Vos,-ni ~I S. i I

ilicmigalm tStatr. VnirvrSitv Univvy''sit Ili ut nnv,li jv(iiVi'i

Prof H) i. J'rI I'y P'rot It. Remiagc, Ar. (i . I i

rOxaS A &t M Founidatio'n Imivrsitv ot Delawamm~re v

P-rot Wt. .. Hirsch ('rot Hll, Izi~dwyl V'I I1 i.1,O o 1, 1

Courant institute Universjtv Ili(Berrie, Il~ i i. i I v ,

Dr Alan J(. Hot f manl Mr Diavidt Rm'sm'blatt Pr'f .1'o: A. !C... l,

IBM., Yorktown Heights Washilngtoin. Di. C. DmIi', Ii Iiv. V.I

Prof John R1. Isbell VI'll M. Ro.mldtI(t ('ri S. . 1,i.

SUNY, .\mlerqt (JimVersI(Ot viCA ilfIJ i.;Y~.'mi ig. ~ N, ji ogIiti

or J1. L. J(ain Prof Alon .1. Rowe hlr vti1

University of Delhi tlniversitv of Southtern California (.1 Aviv f il,,. lvii v

('rut .1 . It. K. Kau

('uYLtek-i Inst itute 01 New York

,ILMEI

